
Abstract Interpretation Plugins for Type Systems

Tobias Gedell and Daniel Hedin

Chalmers University of Technology

Abstract. The precision of many type based analyses can be significantly in-
creased given additional information about the programs’ execution. For this rea-
son it is not uncommon for such analyses to integrate supporting analyses com-
puting, for instance, nil-pointer or alias information. Such integration is prob-
lematic for a number of reasons: 1) it obscures the original intention of the type
system especially if multiple additional analyses are added, 2) it makes use of al-
ready available analyses difficult, since they have to be rephrased as type systems,
and 3) it is non-modular: changing the supporting analyses implies changing the
entire type system.
Using ideas from abstract interpretation we present a method for parameterizing
type systems over the results of abstract analyses in such a way that one mod-
ular correctness proof can be obtained. This is achieved by defining a general
format for information transferal and use of the information provided by the ab-
stract analyses. The key gain from this method is a clear separation between the
correctness of the analyses and the type system, both in the implementation and
correctness proof, which leads to a comparatively easy way of changing the pa-
rameterized analysis, and making use of precise, and hence complicated analyses.
In addition, we exemplify the use of the framework by presenting a parameterized
type system that uses additional information to improve the precision of exception
types in a small imperative language with arrays.

1 Introduction

In the book Types and Programming Languages [14] Pierce defines a type system in the
following way: "A type system is a tractable syntactic method for proving the absence
of certain program behaviors by classifying phrases according to the kinds of values
they compute".

Pierce limits his definition to the absence of certain program behaviors, since many
interesting (bad) behaviors cannot be ruled out statically. Well-known examples of this
include division by zero, nil-pointer dereference and class cast errors. The standard
solution to this is to lift the semantics and include these errors into the valid results
of the execution, often in the form of exceptions, and to have the type system rule out
all errors not modeled in the semantics, typically in addition to tracking what errors a
program may result in.

For a standard type system this solution is adequate; the types of programs are not
affected in any other way than the addition of a set of possible exceptions. In particular,
any inaccuracies in the set of possible exceptions are unproblematic to the type sys-
tem itself (albeit inconvenient to the programmer), and, thus, in standard programming

languages not much effort is made to rule out syntactically present but semantically
impossible exceptions.

For type based program analyses, however, the situation is different. Not only are
we not able to change the semantics to fit the capabilities of the type system, since we
are, in effect, retrofitting a type system onto an existing language, but for some analyses
— notably, for information flow security type systems [15] — inaccuracies propagate
from e.g. the exception types via implicit flows to the other types lowering the precision
of the type system and possibly rendering more semantically secure programs to be
classified as insecure. Consider the following example:

try c1; c2; ... catch (Exception e) ch

If the command c1 may fail this affects whether the succeeding commands c2, . . . are
run or not, and thus any side effects — e.g. output on a public network — will encode
information about the data manipulated by c1. If this information must be protected, this
put serious limits on the succeeding commands c2, . . . and on the exception handler ch.

This is problematic, since dynamic error handling introduces many possible branches
— every partial instruction becomes a possible branch to the error handler if it cannot
be guaranteed not to crash, and, thus, a source of implicit flows. Hence, from a practi-
cal standpoint, there is a need to increase the accuracy of type based information flow
analyses as demonstrated by some recent attempts [2, 12, 1]. Noting that the majority
of the information flow analyses are formulated in terms of type systems, we focus on
how to strengthen a type system with additional information to increase its accuracy.

Even though our main motivation for this work comes from information flow type
systems, we investigate the problem in terms of a standard type system; this both gen-
eralizes the method and simplifies the presentation. All our results are immediately
applicable to information flow type systems.

We see two major different methods of solving the problem of strengthening type
systems: 1) by integration, and 2) by parameterization. Briefly, 1) relies on extending
the type system to compute the additional needed information, and 2) relies on using
information about the programs’ execution provided by other analyses. Integration is
problematic for a number of reasons: 1) it obscures the original intention of the type
system especially if multiple additional analyses are added, 2) it makes use of already
available analyses difficult, since they have to be rephrased as type systems, and 3) it is
non-modular: changing the supporting analysis implies changing the entire type system.

Contribution We present a modular approach for parameterizing type systems with
information about the program execution; the method is modular not only at the type
system level, but also at the proof level.

The novelty of the approach lies not in the idea of parameterizing information in
itself, rather, the novelty is the setting — the parameterization of type systems with in-
formation from abstract analyses — together with the identification of a general, widely
applicable format for information passing and inspection, which allows for modularity
with only small modifications to the type system and its correctness proof, and no modi-
fications to the abstract analyses. This modularity makes instancing parameterized type
systems with the results of different abstract analyses relatively cheap, which can be

2

leveraged to create staged type systems, where increasingly precise analyses are chosen
based on previous typing errors.

Finally, we exemplify the use of the method in terms of a parameterized type system
for a small imperative language with arrays, and explore how the parameterization can
be used to rule out nil-pointer exceptions, and exceptions stemming from array indices
outside the bounds of the corresponding arrays.

Outline Section 2 presents a small imperative language with arrays, used to explain
the method more concretely. Section 3 presents the parameterization: the abstract en-
vironment maps, the plugins properties and the plugins, and describes the process of
parameterizing a type system. Section 4 is a concrete example of applying the method
to get a parameterized type system of the language of Section 2. Section 5 discusses
related work, and finally Section 6 concludes and discusses future work.

2 Language

To be concrete we use a small imperative language with arrays to illustrate our method.

Syntax The language is a standard while language with arrays. For simplicity we con-
sider all binary operators to be total; the same techniques described to handling the
partiality of array indexing apply to partial operators. The syntax of the language is
found in Table 1, where the allocation type τ [i] indicates that an array of size i with
elements of type τ should be allocated; the primitive types ranged over by τ are defined
in Section 4.1 below.

Expressions e ::= nil | i | x | e ? e | x[e] | len(x)
Commands c ::= x := e | x[e] := x | if e c c | while e c | c; c | x := new(τ [i]) | skip

Table 1. Syntax

Semantics The semantics of the expressions is given in terms of a big step semantics
with transitions of the form 〈E, e〉 ⇓ v⊥, where v⊥ ranges over error lifted values v (⊥
indicates errors), and E ranges over the set of environments Env , i.e. pairs (s, h) of a
store, and a heap. The values consist of the integers i and the pointers p. The arrays a are
pairs (i, d) of the size of the array and a map from integers to values with a continuous
domain starting from 0. Formally, d ranges over

⋃
n∈N{[0 7→ v1, . . . , n 7→ vn]}. The

stores s are maps from variables x to values, and the heaps h are maps from pointers to
arrays.

In the definition of the semantics, if a = (i1, d) then let a(i2) denote d(i2). Further,
for E = (s, h), let E(x) denote s(x), E[x 7→ v] denote (s[x 7→ v], h), E(p) denote
h(p), and similarly for other operations on environments including variables or pointers.

The semantics of commands is given in terms of a small step semantics between
configurations C with transitions of the form 〈E, c〉 → C, where C is either one of the
terminal configurations ⊥E and 〈E, skip〉 indicating abnormal and normal termination

3

in the environment E, respectively, or a non-terminal configuration 〈E, c〉 where c 6=
skip. A selection of the semantic rules for expressions and commands are presented in
Table 2; the omitted rules are found in the extended version of this paper [9].

E(x) = p E(p) = (i, d)

〈E, len(x)〉 ⇓ i

E(x) = nil

〈E, len(x)〉 ⇓ ⊥
E(x1) = nil

〈E, x1[i] := x2〉 → ⊥E

E(x1) = p E(p) = (i2, d) E(x2) = v i1 6∈ [0..(i2 − 1)]

〈E, x1[i1] := x2〉 → ⊥E

E(x1) = p E(p) = (i2, d) E(x2) = v i1 ∈ [0..(i2 − 1)]

〈E, x1[i1] := x2〉 → 〈E[p 7→ (i2, d[i1 7→ v])], skip〉

〈E,while e c〉 → 〈E, if e (c;while e c) skip〉

〈E, e〉 ⇓ v

〈E, R[e]〉 → 〈E, R[v]〉
〈E, e〉 ⇓ ⊥

〈E, R[e]〉 → ⊥E

E(x) = p E(p) = (i1, d)
〈E, e〉 ⇓ i2 i2 6∈ [0..i1 − 1]

〈E, x[e]〉 ⇓ ⊥
〈E1, c1〉 → 〈E2, c2〉

〈E1, R[c1]〉 → 〈E2, R[c2]〉
〈E, c〉 → ⊥E

〈E, R[c]〉 → ⊥E

Table 2. Selected Semantic Rules for Expressions and Commands

As is common for small step semantics we use evaluation contexts R.

R ::= · | x := R | x[R] := x | if R c c | R; c

The accompanying standard reduction rules allow for leftmost reduction of sequences,
error propagation and reduction of expressions inside commands.

3 Parameterization

With this we are ready to detail the method of parameterization. First, let us recapture
our goal: we want to describe a modular way of parameterizing a type system with
information about the programs’ execution in such a way that a modular correctness
proof can be formed for the resulting system, with the property that an instantiated
system satisfies a correspondingly instantiated correctness proof.

To achieve this, we define a general format of parameterized information and a gen-
eral method to access this information. Using the ideas of abstract interpretation, we let
the parameterized information be a map from program points to abstract environments,
intuitively representing the set of environments that can reach each program point. Such
a map is semantically sound — a solution in our terminology — w.r.t. a set of initial
concrete environments and a program, if every possible execution trace the initial envi-
ronments can give rise to is modeled by the map.

For modularity we do not want to assume anything about the structure of the abstract
environments, but treat them as completely opaque. Noting that each type system uses
a finite number of forms of questions, we parameterize the type system not only over
the abstract environment map, but also over a set of plugins — sound approximations
of the semantic properties of the questions used by the type system.

4

Labeled Commands Following the elegant approach of Sands and Hunt [13] we extend
the command language with label annotations, which allow for a particularly direct way
of recording the environments that enter and leave the labeled commands. Let l range
over labels drawn from the set of labels L. A command c can be annotated with an entry
label (c)l , an exit label (c)l , or both.

We extend the reduction contexts with (R)l , which allows for reduction under exit
labels, and the semantics with the following transitions.

〈E, (c)l〉 → 〈E, c〉 〈E, (skip)l〉 → 〈E, skip〉

The idea is that a transition of the form 〈E, (c)l〉 → 〈E, c〉 leaves a marker in the
execution sequence that the command labeled with the entry label l was executed in E,
and a transition of the form 〈E, (skip)l〉 → 〈E, skip〉 indicates that the environment
E was produced by the command labeled with the exit label l , which is why allowing
reduction under exit labels but not under entry labels is important.

3.1 Abstract Environment Maps

Using the ideas of abstract interpretation [4, 5], let Env be the set of abstract environ-
ments ranged over by E, equipped with a concretization function γ : Env → P(Env),
and let an abstract environment map M : L → Env be a map from program points
to abstract environments, associating each program point with an abstract environment
representing all concrete environments that may reach the program point.

We define two soundness properties for abstract environment maps that relate the
maps to the execution of a program when started in environments drawn from a set of
initial environments C.

An abstract environment map M is an entry solution written entrysolE1
c1

(M) w.r.t.
an initial concrete environment E1, and a program c1 if all 〈E2, (c2)l〉 → 〈E2, c2〉
transitions in the trace originating in 〈E1, c1〉 are captured by M. The notion of exit
solution written exitsolE1

c (M) is defined similarly but w.r.t. all transitions of the form
〈E2, (skip)l〉 → 〈E2, skip〉.

entrysolE1
c1

(M) ≡ ∀E2, c2, l . 〈E1, c1〉 →∗ 〈E2, R[(c2)l]〉 =⇒ E2 ∈ γ(M(l))
exitsolE1

c (M) ≡ ∀E2, l . 〈E1, c〉 →∗ 〈E2, R[(skip)l]〉 =⇒ E2 ∈ γ(M(l))

The definitions are lifted to sets of initial environments C in the obvious way.
Both the entry and exit solution properties are preserved under execution as defined

below.

Lemma 1 (Preservation of Entry and Exit Solutions under Execution). In the fol-
lowing, let C1 be the set of initial concrete environments and C2 the set of environments
that reach c2, i.e. C2 = {E2 | E1 ∈ C1, 〈E1, c1〉 → 〈E2, c2〉}.

entrysolC1
c1

(M) =⇒ entrysolC2
c2

(M) and exitsolC1
c1

(M) =⇒ exitsolC2
c2

(M)

These properties immediately extend to any finite sequence of execution steps by in-
ductions over the length of the sequence.

5

Further, solutions can freely be paired to form new solutions similarly to the inde-
pendent attribute method for abstract interpretation [5]. This is important since it shows
that no generality is lost by parameterizing a type system over only one abstract envi-
ronment map.

3.2 Plugins

To the parameterized type systems, the structure of the abstract environments is opaque
and cannot be accessed directly. This allows for the decoupling of the parameterized
type system and the external analysis computing the abstract environments. However,
the parameterized type systems need a way to extract the desired information. To this
end we introduce the concept of plugins. Intuitively, a plugin provides information about
a specific property of an environment; for instance, a nil-pointer plugin provides infor-
mation about which parts of the environment are nil.

The plugins are defined to be sound approximations of plugin properties, defined as
families of relations on expressions.

Plugin Properties Let R be an n-ary relation on values; R induces a plugin property,
written R�, which is a family of n-ary relations on expressions indexed by environments
in the following way.

(e1, . . . , en) ∈ R�
E ⇐⇒ 〈E, e1〉 ⇓ v1 ∧ . . . ∧ 〈E, en〉 ⇓ vn =⇒ (v1, . . . , vn) ∈ R

We can use the expression language to define semantic properties about environments,
since the expression language is simple, in particular, since it does not contain iteration,
and is free from side effects. A major advantage of the approach is that it allows for a
relatively simple treatment of expressions in programs.

The choice of using the expression language as the plugin language is merely out of
convenience — languages with richer expression language would mandate a separate
language for the plugins and treat the exceptions similarly to the statement, i.e. extend
the labeling and the solutions to the expressions. In our case, however, a separate plugin
language would be identical to the expressions.

Example 1 (Non-nil and Less-than Plugin Properties). The non-nil plugin property nn�

can be defined by a family of predicates indexed over concrete environments induced
by the value property nn defined such that nn(v) holds only if the value v is not equal to
nil. Similarly, the less-than plugin property lt� can be defined by lt such that lt(v1, v2)
holds only if the value v1 is less than the value v2. ut

Plugins A plugin is a family of relations on expressions indexed by abstract environ-
ments. Given a plugin property R� we define plugins, R] as follows.

(e1, . . . , en) ∈ R]
E

=⇒ ∀E ∈ γ(E). (e1, . . . , en) ∈ R�
E

It is important to note that for each plugin property there are many possible plugins,
since the above formulation allows for approximative plugins. This means that regard-
less of the abstract environment, and the decidability of the plugin property R�, there
exist decidable plugins, which guarantees the possibility of preservation of decidability
for parameterized type systems.

6

Example 2 (Use of Plugins). Assume a type system computing a set of possibly thrown
exceptions. When typing, for example, the array length operator len(x) we are inter-
ested in the plugin property given by the non-nil predicate nn. Let E be a sound repre-
sentation of all environments reaching len(x). Given nn]

E
(x), we know that x will not

be nil in any of the concrete environments represented by E, and, since E is a sound
representation of all environments that can reach the array length operator, we know
that a nil-pointer exception will not be thrown. ut

Despite the relative simplicity of the plugin format it is surprisingly powerful; in
addition to the obvious information, such as is x ever nil, it turns out that plugins can be
used to explore the structure of the heap as we show in [10] where we use the parame-
terization to provide flow sensitive heap types.

3.3 Overview of a Parameterized Type System

Assume an arbitrary flow insensitive type system1 of the form Γ `A c expressing that
c is well-typed in the type signature Γ , under the additional assumption A. We let the
exact forms of Γ and A be abstract; however, typical examples are that Γ is a store
type, and, for information flow type systems, that A is the security level of the context,
known as the pc [15].

The first step in parameterizing the type system is to identify the plugin properties
R�

1, . . . , R
�
m that are to be used in the parameterized type rules. For instance the non-

nil plugin property can be used to increase the precision of the type rule for the array
length operator as discussed in Example 2 above, cf. the corresponding type rules in
Section 4 below. Each type rule is then parameterized with an abstract environment
map M, and a number of plugins R]

1, . . . R
]
m, one for each of the plugin properties,

forming a parameterized system of the following form.

Γ `
M, R]

1, . . . , R]
m

A c

A typical correctness argument for type systems is preservation [14], i.e. the preser-
vation of a type induced invariant, well-formedness, (see Section 4.3 below) under ex-
ecution. Well-formedness defines when an environment conforms to an environment
type, e.g. that all variables of integer type contain integers. Let wf Γ (E) denote that
E is well-formed in the environment type Γ ; a typical preservation statement has the
following form:

Γ `A c =⇒ wf Γ (E1) ∧ 〈E1, c〉 → E2 =⇒ wf Γ (E2)

More generally, a class of correctness arguments for type systems have the form of
preservation of an arbitrary type indexed relation RΓ under execution:

Γ `A c =⇒ RΓ (E11, . . . , E1n)∧
〈E11, c〉 → E21 ∧ · · · ∧ 〈E1n, c〉 → E2n =⇒ RΓ (E21, . . . , E2n)

1 Our method works equally well for flow sensitive type systems, but for brevity of explanation
this section is done in terms of a flow insensitive system.

7

This generalization is needed to capture invariants that are not safety properties, for
instance noninterference or live variable analysis.

For conservative parameterizations, i.e. where we add type rules with increased
precision, the proofs of correctness are essentially identical to the old proofs, where
certain execution cases have been ruled out using the semantic interpretation of the
plugins. To see this consider that a typical proof of the above lemma proceeds with a
case analysis on the possible ways c can execute in the different environments E11 to
E1n and proves the property for each case. See the proof of Theorem 1 in Section 4.3
for an example of this. The correctness statement for the parameterized types system
becomes:

entrysolCc (M) ∧ E11 ∈ C ∧ · · · ∧ E1n ∈ C ∧ Γ `
M, R]

1, . . . , R]
m

A c =⇒

RΓ (E11, . . . , E1n)∧〈E11, c〉 → E21∧· · ·∧〈E1n, c〉 → E2n =⇒ RΓ (E21, . . . , E2n)

The interpretation of this statement is that execution started in any of the environments
in the set of possible initial environments is RΓ -preserving, i.e. it narrows the validity
of the original lemma to the set of initial environments.

Proof of Correctness It is important to note that we do not need to redo any parts of
the correctness proof when instantiating a parameterized type system.

The assumption that the extracted abstract environment maps are sound for the pro-
gram and set of initial environments under consideration, i.e. that they are solutions, is
established once per family of external analysis. This is established by, e.g., formulating
the family as a family of abstract interpretations and proving that all environment maps
extracted from an abstract analysis belonging to the family are sound for the program
and set of initial environments that the analysis was started with.

What is left per instantiation is to show that the used plugins are valid. In most
cases, this is trivial since the structure of the abstract environments have been chosen
with this in mind. Furthermore, many type systems can be improved with similar infor-
mation; thus, it should be possible to build a library with plugins for different plugin
properties that can be used when instantiating implementations of parameterized type
systems. This is important because it shows that creating new correct instantiations is a
comparatively cheap operation, which leads to interesting implementation possibilities.

4 A Parameterized Type System

In this section we exemplify the ideas described in the previous section by presenting
a parameterized type system for the language introduced in Section 2. The type system
improves over the typical type system for such a language by using the parameterized
information to rule out exceptions that cannot occur.

A larger example of a parameterized type system, showing how plugins can be used
to perform structural weakening and strong updates for a flow-sensitive type system,
can be found in [10].

8

4.1 Type Language

The primitive types ranged over by τ are the type of integers int , and array types, τ [],
indicating an array with elements of type τ . The store types ranged over by Σ are maps
from variables to primitive types. The exception types ranged over by ξ are ⊥Σ , indi-
cating the possibility that an exception is thrown, and >, indicating that no exception
is thrown. This is a simplification from typical models of exceptions, where multiple
types are used to indicate the reason for the exception. However, for the purpose of
exemplifying the parameterization this model suffices; the results are easily extended
to a richer model. In addition we use a standard subtype relation <:(omitted for space
reasons) with invariant array types.

4.2 Type Rules

The judgments for expressions, Σ `E,nn],lt] e : τ, ξ, is read as the expression e is
well-typed w.r.t. the abstract environment E, the non-nil plugin nn], and the less-than
plugin lt], in the environment type Σ, with return type τ possibly resulting in excep-
tions as indicated by ξ. The type system for commands is flow-sensitive; the judgment,
Σ1 `M,nn],lt] c ⇒ Σ2, ξ is read as the command c is well-typed w.r.t. the abstract envi-
ronment map M, the non-nil plugin nn], and the less-than plugin lt], in the environment
type Σ1 resulting in the environment type Σ2, possibly resulting in an exception as indi-
cated by ξ. The relevant type rules for expressions and commands are found in Table 3
where we use `† as short notation for `M,nn],lt] and `‡ as short notation for `E,nn],lt] ;
the omitted rules are found in the extended version of this paper [9].

Σ `M(l),nn],lt] e : int , ξ Σ(x1) = τ1[] Σ(x2) = τ2 τ2 <: τ1

¬(nn]
M(l)(x1) ∧ −1 lt]

M(l) e ∧ e lt]
M(l) len(x1))

Σ `† (x1[e] := x2)
l ⇒ Σ,⊥Σ

Σ `M(l),nn],lt] e : int , ξ Σ(x1) = τ1[] Σ(x2) = τ2 τ2 <: τ1

nn]
M(l)(x1) −1 lt]

M(l) e e lt]
M(l) len(x1)

Σ `† (x1[e] := x2)
l ⇒ Σ, ξ

Σ(x) = τ [] ¬nn]
E
(x)

Σ `‡ len(x) : int ,⊥Σ

Σ(x) = τ [] nn]
E
(x)

Σ `‡ len(x) : int ,>
Table 3. Selected Type Rules for Expressions and Commands

Apart from the parts related to the parameterization, the expression and command
type rules are entirely standard. With respect to the parameterization specifics, the type
rules for array size, and array indexing make use of the parameterized information and
occur in two forms: one that is able to exclude the possibility of exceptions, and one
that is not.

For the array size operator it suffices to rule out that the variable x ever contains nil
to rule out the possibility of exceptions, for array indexing (for both the expression and
the command) we must demand that the index is greater or equal to zero, and that the

9

index is smaller than the size of the array in addition to the demand that the variable is
non-nil. For an example detailing the type derivation of a small program with different
parameterized information see the example in the extended version of this paper [9].

4.3 Correctness

With this we are ready to formulate correctness for the parameterized type system. As
is standard we split the correctness argument into two theorems, progress — intuitively,
that well-typed commands and expressions are able to execute in all environments that
conform to the entry environment type of the command or expression — and preser-
vation — intuitively, that the result of running the command or expression conforms
to the exit type of the same. In contrast to the preservation proof, the progress proof is
independent of the parameterized information. For space reasons we omit the progress
proof.

Well-formedness The well-formedness relation in Table 4 defines when a context is
well-formed w.r.t. a type. It is the extension of a standard well-formedness relation to
exception types. Most of the standard well-formedness relation has been omitted for
space reasons and is found in the extended version of this paper [9]. In short, a value

δ ` v : τ
δ ` v : τ, ξ δ ` ⊥ : τ,⊥Σ

δ ` E : Σ2

δ `M,nn],lt] ⊥E : Σ1,⊥Σ2

δ ` E : Σ

δ `M,nn],lt] E : Σ, ξ

Σ1 `M,nn],lt] c ⇒ Σ2, ξ δ ` E : Σ1

δ `M,nn],lt] 〈E, c〉 : Σ2, ξ

∀i ∈ dom(a) . δ ` a[i] : τ

δ ` a : τ []

Table 4. Well-formedness

is well-formed w.r.t. any exception type, whereas an error is only well-formed w.r.t. an
exception type that indicates the possibility of the error, and similarly for well-formed
environments, with the addition of the demand that the exception environment is well-
formed in the exception environment type. A configuration is well-formed in the type
Σ2, ξ if there exists an environment type Σ1 in which the environment E is well-formed
such that the command is well-typed with Σ1 as entry type and the Σ2, ξ as exit type.

Preservation of Types of Expressions and Commands Preservation of types of expres-
sions expresses that well-typed expressions preserve well-formedness under execution,
i.e. for an expression e s.t. Σ `E,nn],lt] e : τ, ξ running e in Σ-well-formed environ-
ments that are modeled by the abstract environment E will result in τ, ξ-well-formed
values.

Theorem 1 (Preservation of Types of Expressions).

Σ `E,nn],lt] e : τ, ξ =⇒ ∀E ∈ γ(E) . δ ` E : Σ ∧ 〈E, e〉 ⇓ v =⇒ δ ` v : τ, ξ

10

Proof. By induction on the derivation of Σ `E,nn],lt] e : τ, ξ. Intuitively, in each case,
the proof proceeds by an inversion of 〈E, e〉 ⇓ v, which results in a number of sub-
cases — one for each semantic rule for the expression, including the ones resulting
in exceptions. However, in the cases where the type system can rule out exception it
contains enough information about the execution from the use of the plugins on the
abstract environment to disprove the possibility of an exception.

We exemplify the difference between a standard proof and a parameterized proof by
proving the correctness for the array indexing cases, corresponding to the two type rules
for array indexing — for space reasons, in the cases the antecedents of the expression
type rules and semantics rules are subsets of their command counterparts the expression
rules have been omitted in this version of the paper, and we refer the reader to the
command type rules in order to follow the proof below.

Assume Σ `E,nn],lt] e : τ, ξ, (2) E ∈ γ(E), (3) δ ` E : Σ and (4) 〈E, e〉 ⇓ v. We
must show δ ` v : τ, ξ.

array indexing with exceptions In this case the last applied type rule in the derivation
is the rule that cannot rule out exceptions, which gives (5) Σ(x) = τ [], Σ `E,nn],lt]

e′ : int , ξ′, ¬(nn]
E
(x) ∧ −1 lt]

E
e′ ∧ e′ lt]

E
len(x)), ξ = ⊥Σ and that e = x[e′].

Inversion of (4) gives us the following four cases.
1) nil-pointer exception This case gives v = ⊥ from which the result δ ` ⊥ :

τ,⊥Σ is immediate.
2) e leads to an exception Same as the case above.
3) index out of bounds Same as the case above.
4) successful execution Let E = (s, h); this case gives (6) s(x) = p, h(p) =

(i1, d), 〈E, e′〉 ⇓ i2, (7) i2 ∈ [0..(i1 − 1)] and v = d(i2). From (3, 5, 6) we
get δ ` p : τ [], which in turn gives δ(p) <: τ [], which means (8) δ(p) = τ [],
since array subtyping is invariant. Further, (3) and (8) give δ ` h(p) : τ [],
which gives ∀i ∈ dom((i1, d)) . δ ` (i1, d)(i) : τ . Thus, (7) gives us that
i2 ∈ dom((i1, d)), from which we get the result δ ` d(i2) : τ .

array indexing without exceptions In this case the last applied type rule in the deriva-
tion is the rule that rules out exceptions, which gives Σ(x) = τ [], Σ `E,nn],lt] e′ :
int , ξ, (5) nn]

E
(x), (6) − 1 lt]

E
e′, (7) e′ lt]

E
len(x), and that e = x[e′]. Again,

inversion of (4) gives us the following four cases.
1) nil-pointer exception This case gives (8) s(x) = nil. (1) and (5) give ∀E ∈

γ(E). x ∈ nn�E , which together with (2) gives (9) 〈E, x〉 ⇓ nil =⇒ nil ∈ nn.
(8) gives 〈E, x〉 ⇓ nil, which together with (9) gives nil ∈ nn which is a
contradiction.

2) e leads to an exception This case gives 〈E, e′〉 ⇓ ⊥ which together with the
induction hypothesis gives ξ = ⊥Σ from which the result is immediate.

3) index out of bounds This case gives s(x) = p, h(p) = (i1, d), 〈E, e′〉 ⇓ i2 and
(8) i2 6∈ [0..(i1 − 1)]. In a way similar to 1) above, we use (6) to disprove
that i2 is less than 0 and (7) to disprove that i2 is greater than or equal to i1.
Together this contradicts (8) and we have reached a contradiction.

4) successful execution This case is proven in the same way as case 4) in array
indexing with exceptions.

11

Thus, as the proof of preservation of types for array indexing shows, we achieve
higher precision in the exception type by using the parameterized information to dis-
prove some cases as described in Section 3.3. As discussed, the proof for the parame-
terized type system is essentially identical to the original proof where there is no pa-
rameterized information, with the difference that two cases are disproved.

Given the well-formedness formulation for configurations above, preservation of
types of commands can be formulated in the same way as preservation of types of
expressions.

Theorem 2 (Preservation of Types of Commands).

Σ1 `M,nn],lt] c ⇒ Σ2, ξ ∧ entrysolCc (M) =⇒

∀E ∈ C . δ1 ` E : Σ1 ∧ 〈E, c〉 → C =⇒ ∃δ2 . δ2 `M,nn],lt] C : Σ2, ξ

Proof. For space reasons the proof is found in the extended version of this paper [9].

Top-level Correctness of Commands Let 〈E, c〉 →n C be the obvious lifting of the
small step evaluation to evaluation of n consecutive steps. With this we are ready to
formulate the top-level correctness of commands, that well-typed commands terminate
in a well-formed environment or result in well-formed configurations regardless of the
number of execution steps. For convenience we let T range over terminal configura-
tions.

Theorem 3 (Top-level Correctness of Commands).

Σ1 `M,nn],lt] c1 ⇒ Σ2, ξ ∧ entrysolCc1
(M) =⇒ ∀E1 ∈ C . δ1 ` E1 : Σ1 =⇒

∀n. (∃n′ ≤ n, T, δ2. 〈E1, c1〉 →n′
T ∧ δ2 ` T : Σ2, ξ)∨

(∃E2, c2, δ2. 〈E1, c1〉 →n 〈E2, c2〉 ∧ δ2 `M,nn],lt] 〈E2, c2〉 : Σ2, ξ)

Proof. For space reasons the proof is found in an extended version of this paper [9].

5 Related Work

The method presented in this paper combines an analysis, formulated as a type system,
with a number of external analyses, computing information useful to the type system,
by parameterizing the type system over the computed information.

Similar in spirit is the work by Foster, Fähndrich and Aiken [8] in which they present
a framework for augmenting existing type systems with type qualifiers, e.g. const and
nonnil. Our work differs from theirs in that they provide a framework to compute the
qualifiers, rather than making use of them.

In [3] Chin, Markstrum and Millstein investigate a method for supporting user-
defined semantic type qualifiers that are closely related to unary plugins. As above,
their work is aimed at computing an analysis result, rather than modularly making use
of it. In addition to reason about soundness they propose a method to automatically
verify the soundness of the extension using an automatic theorem prover.

12

Among the type systems making use of additional information are type systems that
eliminate array bound checks, e.g. [16], using a decidable formulation of dependent
types. It should be pointed out that even though the type checking is decidable the
inference is not; nothing in our approach rules out inference. In [12] Hedin and Sands
use a simplistic type based inference of nil-pointers needed to allow the use of non-
secret fields in objects pointed to by pointers with secret pointer values. We believe that
the clarity, correctness proof and power of their system could benefit greatly by being
reformulated in our framework.

In [6] Crary and Weirich present a type system for resource bound verification, e.g.
memory usage and execution time. Their type system goes beyond the capacity of the
plugins framework — time and memory usage are not values in a standard semantics. It
could potentially be interesting to see to what extent the plugins model can be modified
to encompass such extensions.

While this work suggests resolving type errors by using more and more elaborate
parameterized analyses, Flanagan [7] suggests pushing checks that cannot be statically
resolved to runtime checks, cf. type cast checks in Java. For many uses of the plugins
framework, uniting the two approaches could prove beneficial — if the program cannot
be statically proven correct using a different external analysis, Flanagan’s method could
be applied to insert a dynamic check.

With respect to other work on combining static analyses, if the analyses we want
to combine are formulated as abstract interpretations, a number of techniques from the
large body of work on abstract interpretation [4, 5, 11] becomes applicable. An exam-
ple of such a combination is the reduced product method. Similar to our method, the
combination can be done in a systematic way and correctness of the resulting analysis
follows from correctness of the combined analyses.

An advantage of the abstract interpretation framework is that for partially overlap-
ping analyses and a combination like the reduced product, the analyses will benefit from
each other. Each analysis can make use of the information computed by the other anal-
yses, which stands in contrast to our method where the external analyses cannot make
direct use of the derivation of the parameterized type system.

However, an obvious restriction of the abstract interpretation framework is that all
analyses must be formulated as abstract interpretations, which is not always the case.
Reformulating, for example, a type based analysis into an abstract interpretation is not
always easily done nor desirable, as for example indicated by the field of security where
the analyses tend to be type based [15]. Our approach does not have that restriction. A
type system can be combined with any external analyses that compute valid solutions. If
the external analyses are formulated as abstract interpretations our method can be com-
bined with the abstract interpretation framework to make use of, for example, reduced
products.

6 Conclusions and Future Work

We have presented a method for parameterizing program analyses for imperative small
step languages with information about the programs’ execution. The appeal of the
method compared to approaches where additional information about the programs’ ex-

13

ecution is provided by extending the type system with capabilities of computing the
additional information, i.e. fusing the type system with another analysis, lies in that:

– The parameterization does not impose heavy changes to the type system. The rules
remain relatively close to the original rules; only the use of the additional infor-
mation is added to the rules where the information is used — other rules remain
essentially unaffected. Comparatively, fusing an analysis modifies all rules to com-
pute the information, in addition to the uses of the information in certain rules.

– The parameterization gives the possibility of changing the parameterized analysis
with relative ease — proofs for the family of analyses2, and decision procedures
with corresponding soundness proofs have to be done. Comparatively, changing
the analysis for a fused type system means creating a new fused type system and
correctness proof from scratch.

The method is based on the identification of a generic format for information ex-
change between the program analysis and the parameterized results, together with meth-
ods — the plugins — for asking specific questions about the each program parts execu-
tion environment.

To exemplify the method we have given an overview of the steps involved in pa-
rameterizing an existing type system, including the changes to the type system itself,
but also the changes to the correctness proof of the type system. A corner stone in this
work is the attempt to make the correctness proof a natural part of the parameterization
process so that the proof burden for each parameterization is relatively low.

A drawback is that the resulting system may no longer be compositional; e.g. a
compositional type system becomes non-compositional if the parameterized informa-
tion is not compositional. Another restriction is that the parameterization is one-way
only; there is no back propagation of type information that could have been used by the
parameterized analysis.

Future Work The motivation for this work grew out of a perceived need to increase the
precision of type based analyses of secure information flow. For this reason a natural
continuation of this work is to apply the method to an information flow type system.

In addition to this, an implementation of the parameterized type system of this pa-
per would be valuable to asses the practicality of the approach. Of particular interest
would be to implement a staged type system, where the reason for a type failure is an-
alyzed and given as feedback to the next stage. The benefit of doing this is apparent in
cases where the abstract environment map is a combination of the result of a number
of external analyses. One way to view a set of increasingly precise external analyses
is as a matrix with one dimension for each type of analysis and plugin property. In the
general setting where a parameterized type system uses multiple external analyses the
external analyses build up a multi-dimensional matrix where each point corresponds to
a particular instantiation of the type system.

2 The proof only has to be done once for each family, and typically includes a way of converting
the analysis information provided by the family to the format of the parameterization.

14

Acknowledgements This work was partly supported by the Swedish research agencies
SSF, VR and Vinnova, and by the Information Society Technologies programme of the
European Commission, Future and Emerging Technologies under the IST-2005-015905
MOBIUS project.

References
1. Torben Amtoft, Sruthi Bandhakavi, and Anindya Banerjee. A logic for information flow in

object-oriented programs. In POPL ’06: Conference record of the 33rd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 91–102, New York,
NY, USA, 2006. ACM Press.

2. Gilles Barthe, David Pichardie, and Tamara Rezk. A certified lightweight non-interference
java bytecode verifier. In R. De Niccola, editor, European Symposium on Programming,
Lecture Notes in Computer Science. Springer-Verlag, 2007. To appear.

3. Brian Chin, Shane Markstrum, and Todd Millstein. Semantic type qualifiers. SIGPLAN Not.,
40(6):85–95, 2005.

4. Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference Record
of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 238–252, Los Angeles, California, 1977. ACM Press, New York, NY.

5. Patrick Cousot and Radhia Cousot. Systematic design of program analysis frameworks. In
Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 269–282, San Antonio, Texas, 1979. ACM Press, New
York, NY.

6. Karl Crary and Stephnie Weirich. Resource bound certification. In POPL ’00: Proceedings
of the 27th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 184–198, New York, NY, USA, 2000. ACM.

7. Cormac Flanagan. Hybrid type checking. In POPL ’06: Conference record of the 33rd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages 245–256,
New York, NY, USA, 2006. ACM.

8. Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. A theory of type qualifiers.
SIGPLAN Not., 34(5):192–203, 1999.

9. Tobias Gedell and Daniel Hedin. Abstract interpretation plugins for type systems. Technical
Report 2008:10, Computing Science Department, Chalmers.

10. Tobias Gedell and Daniel Hedin. Plugins for structural weakening and strong updates. Un-
published.

11. Sumit Gulwani and Ashish Tiwari. Combining abstract interpreters. In PLDI ’06: Proceed-
ings of the 2006 ACM SIGPLAN conference on Programming language design and imple-
mentation, pages 376–386, New York, NY, USA, 2006. ACM Press.

12. David Hedin and David Sands. Noninterference in the presence of non-opaque pointers. In
Proceedings of the 19th IEEE Computer Security Foundations Workshop. IEEE Computer
Society Press, 2006.

13. Sebastian Hunt and David Sands. Just forget it – the semantics and enforcement of infor-
mation erasure. In Programming Languages and Systems. 17th European Symposium on
Programming, ESOP 2008, number 4960 in LNCS, pages 239–253. Springer Verlag, 2008.

14. Benjamin C. Pierce, editor. Types and Programming Languages. MIT Press, 2002.
15. Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security. IEEE

J. Selected Areas in Communications, 21(1):5–19, January 2003.
16. Hongwei Xi and Frank Pfenning. Eliminating array bound checking through dependent

types. SIGPLAN Not., 33(5):249–257, 1998.

15

