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Abstract. There are a number of choices to be made in the design
of a type based usage analysis. Some of these are: Should the analysis
be monomorphic or have some degree of polymorphism? What about
subtyping? How should the analysis deal with user defined algebraic data
types? Should it be a whole program analysis?

Several researchers have speculated that these features are important
but there has been a lack of empirical evidence. In this paper we present
a systematic evaluation of each of these features in the context of a full
scale implementation of a usage analysis for Haskell.

Our measurements show that all features increase the precision. It is,
however, not necessary to have them all to obtain an acceptable precision.

1 Introduction

In this article we study the impact of polymorphism, subtyping, whole program
analysis and accurate data types on type based usage analysis. Usage analysis
is an analysis for lazy functional languages that aims to predict whether an
argument of a function is used at most once. The information can be used to
reduce some of the costly overhead associated with call-by-need and perform
various optimizing program transformations. The focus of this paper is however
solely on improving the precision of usage analysis, not on its uses.

Polymorphism Polymorphism is the primary mechanism for increasing the pre-
cision of a type based analysis and achieving a degree of context sensitivity.

Previous work by Peyton Jones and Wansbrough has indicated that polymor-
phism is important for usage analyses. Convinced that polymorphism could be
dispensed with they made a full scale implementation of a completely monomor-
phic usage analysis. However, it turned out that it was ”almost useless in prac-
tice” [WPJ99]. They drew the conclusion that the reason was the lack of poly-
morphism. In the end they implemented an improved analysis with a simple
form of polymorphism that also incorporated other improvements [Wan02]. The
resulting analysis gave a reasonable precision but there is no evidence that poly-
morphism was the crucial feature.



Studies of other program analyses have come to a different conclusion about
polymorphism. On example is points-to analysis for C for which several studies
have shown that monomorphic analyses [FFA00,HT01,FRD00,Das00,DLFR01]
give adequate precision for the purpose of an optimizing compiler [DLFRO1].
Moreover, extending these analyses with polymorphism seem to have only a
moderate effect [FFA00,DLFRO1].

Point-to analysis may not be directly relevant for usage analysis but it still
begs the question of how much polymorphism really can contribute to the pre-
cision of an analysis. One of the goals of this paper has been to shed some light
on this question.

Subtyping Another important feature in type based analysis is subtyping. It
provides a mechanism for approximating a type by a less informative super
type. This gives a form of context sensitivity since a type may have different
super types at different call sites. It also provides a mechanism for combining
two types, such as the types of the branches of an if expression, by a common
super type. Thus, the effects of subtyping and polymorphism overlap.

This raises a number of questions. Does it suffice with only polymorphism or
only subtyping? How much is gained by having the combination?

Whole program analysis Another issue that also concerns context sensitivity is
whole program analysis versus modular program analysis. A modular analysis
which considers each module in isolation must make a worst case assumption
about the context in which it appears.

This will clearly degrade the precision of the analysis. But how much? Is
whole program analysis a crucial feature? And how does it interact with the
choice of monomorphism versus polymorphism?

Data types Another important design choice in a type based analysis is how
to deal with user defined data types. The intuitive and accurate approach may
require that the number of annotations on a type is exponential in the size of the
type definitions of the analyzed program. The common solution to the problem
is to limit the number of annotations on a type in some way, which can lead to
loss of precision. The question is how big the loss is in practice.

Contributions In order to evaluate the above features, we have implemented a
range of usage analyses:

— With different degrees of polymorphism (Section 3)

— With and without subtyping (Section 4)

Using different treatments of data types (Section 5)

— As whole program analyses and as modular analyses (Section 6)

All analyses have been implemented in the GHC compiler and have been
measured with GHC’s optimizing program transformations both enabled and



disabled. We present figures summarizing (the arithmetic mean of) the effective-
ness of each of the different features. More detailed figures for each of the pro-
grams we’ve analyzed can be found in the first authors licentiate thesis [Ged06].

We have not measured every combination of the above features. Instead we
have started with a very precise analysis and successively turned off various
features to see how much precision is lost. The initial analysis is the most precise
in all but one aspect. It doesn’t use whole program analysis. Our reason for that
is that we wanted to stay close to how we would have implemented the analysis in
GHC. Since GHC supports separate compilation so does our base line analysis.

Our systematic evaluation shows that each of these features has a significant
impact on the precision of the analysis. Especially, it is clear that some kind of
context sensitivity is needed through polymorphism or subtyping. Our results
also show that the different features partly overlap. The combined effect of poly-
morphism and subtyping is for example not very dramatic although each one of
them has a large effect on the accuracy. Another example is that whole program
analysis is more important for monomorphic analysis than polymorphic analysis.

2 Usage Analysis

Implementations of lazy functional languages maintain sharing of evaluation by
updating. For example, the evaluation of

Az +2) (14+2)

proceeds as follows. First, a closure for 1+ 2 is built in the heap and a reference
to the closure is passed to the abstraction. Second, to evaluate x + = the value of
x is required. Thus, the closure is fetched from the heap and evaluated. Third,
the closure is updated (i.e., overwritten) with the result so that when the value
of x is required again, the expression needs not be recomputed.

The same mechanism is used to implement lazy data structures such as po-
tentially infinite lists.

The sharing of evaluation is crucial for the efficiency of lazy languages. How-
ever, it also carries a substantial overhead which is often not needed. For example,
if we evaluate

Az.zx+1)(1+42)

then the update of the closure is unnecessary because the argument is only used
once.

The aim of usage analysis is to detect such cases. The output of the analysis
is an annotated program. Each point in the program that allocates a closure in
the heap is annotated with 1 if the closure that is created at that point is always
used at most once. It is annotated with w if the closure is possibly used more
than once or if the analysis cannot ensure that the closure is used at most once.

The annotations allow a compiler to generate code where the closures are
not updated and thus effectively turning call-by-need into call-by-name. Usage
analysis also enables a number of program transformations [PJPS96,PJM99).



Usage analysis has been studied by a number of researchers
[LGH™92,Mar93, TWM95,Fax95,Gus98, WP J99, WP J00,GS00,Wan02].

2.1 Measuring the Effectiveness

We measured the effectiveness of the analyses by running them on the programs
from the nofib suite [Par93] which is a benchmarking suite designed to evaluate
the Glasgow Haskell Compiler (GHC). We excluded the toy programs and ran
our analysis on the programs classified in the category real but had to exclude
the following three programs: HMMS did not compile with GHC on our test
system, ebnf2ps is dependent on a version of Happy that we could not get to
work with our version of GHC, and wveritas because many analyses ran out of
memory when analyzing it.

Despite the name of the category, the average size of the programs is unfor-
tunately quite small, ranging from 74 to 2,391 lines of code, libraries excluded.

The notion of effectiveness When measuring the effectiveness it is natural to
do so by modifying the runtime system of GHC. The runtime system is modi-
fied to collect the data needed to compute the effectiveness during a program’s
execution.

The easiest way is to count how many created closures that are only used
once and how many of those closures that were detected by the analysis. This
can be implemented by adding three counters to the runtime system: one that is
incremented as soon as an updatable closure is created, one that is incremented
each time a closure is used a second time, and one that is incremented as soon
as a closure annotated with 1 is created. With these counters one can compute
an effectiveness of an analysis:

closures annotated with 1

created closures — closures used twice

This is the metric used by Wansbrough [Wan02].

A drawback of this approach is that it does not take into account that each
program point can only have one annotation — if any of the closures allocated at
a program point is used more than once, that program point has to be annotated
with w for the analysis to be sound. Thus, any program point which has some
closures used more than once and some used at most once would make even
a perfect analysis get less than a 100 percent effectiveness. And such program
points are common.

What we would like to do is to compute the effectiveness by measuring the
proportion of program points that are correctly annotated instead of the propor-
tion of updates that are avoided. We, therefore, modified the run time system to
compute the best possible annotations which are consistent with the observed
run time behavior. L.e., if all the closures allocated at a specific program point is
used at most once during the execution, that program point could be annotated
with 1 otherwise w. We did this by, for each closure, keeping track of at which



program point it was created. When a closure is used a second time we add its
program point to the set of program points that need to be annotated with w.
We were careful to exclude dead code i.e. code that was not executed in the ex-
ecutions such as parts of imported libraries which were not used. It is important
to note that this way of measuring is still based on running the program on a
particular input and a perfect analysis may still get an effectiveness which is less
than 100 percent.

Wansbrough’s and our metrics differ also at another crucial point. The for-
mer metric depends very much on how many times each program point that
allocates closures is executed. If a single program point allocates a majority of
all closures, the computed effectiveness will depend very much on whether that
single program point was correctly annotated by the analysis. In contrast, the
effectiveness computed with the latter measurement will hardly be affected by
one conservative annotation.

We think that our metric is more informative and have, therefore, used it for
all our measurements.

Optimizing program transformations Our implementation is based on GHC
which is a state of the art Haskell implementation. The specific version of GHC
we have used is 5.04.3. GHC parses the programs and translates them into the
intermediate language Core, which is essentially System F [PJPS96]. When GHC
is run with optimizations turned on (i.e. given the flag -0), it performs aggres-
sive program transformation on Core before it is translated further. We inserted
our analyses after GHC’s program transformations just before the translation to
lower level representations.

We ran the analysis with GHC’s program transforming optimizations both
enabled and disabled. The latter gives us a measure of the effectiveness of an
analysis on code prior to program transformations. This is relevant because usage
information can be used to guide the program transformations themselves.

2.2 Implementation

Actually implementing all the analyses we report on in this paper would have
been a daunting task. To get around this problem we used the following trick: The
only analysis we actually implemented was the most precise analysis, with poly-
morphism, polymorphic recursion, subtyping and whole program analysis. This
analysis generated constraints, in the form of Constraint Abstractions [GSO01].
These constraints have enough structure preserved from the original program
to enable us to identify precisely where we can change them to correspond to
a lesser precise analysis. We implemented several transformations on our con-
straints which effectively removed polymorphism, polymorphic recursion, sub-
typing, whole program analysis and which mimicked various ways of handling
data types, respectively.

Although this trick helped us greatly in performing the measurements it had
an unfortunate drawback. The transformed constraints, although semantically
equivalent to a less precise analysis, was very remote from what an actual analysis



would have generated. Several of our translations produced constraints that were
very hard for the constraint solver. Therefore, any timings that we might have
reported on would have been highly misleading. This is the reason why we have
chosen to exclude them from this paper.

3 Polymorphism

We start by evaluating usage polymorphism. To see why it can be a useful
feature, consider the function that adds up three integers.?

plus3xyz=x+y+ =z

Which usage type should we give to this function? Since the function uses all its
arguments just once, it seems reasonable to give it the following type.

Int' — Int!' — Int! — Int®

The annotations on the type express that all three arguments are used just once
by the function and that the result may be used several times. However, this
type is not correct. The problem is that the function may be partially applied:

map (plus3 (14 2) (3+4)) zs

If zs has at least two elements then plus3 (14 2) (34 4) is used more than once.
As a consequence, so is also (14 2) and (3 +4).

To express that functions may be used several times we need to annotate
also function arrows. A possible type for plus8 could be:

Int® —¥ Int” —¥ Int' —* Int®

The function arrows are annotated with w which indicates that plus3 and its
partial applications may be used several times. The price we pay is that the first
and the second argument are given the type Int”. This type is sound but it is
clearly not a good one for call sites where plus3 is not partially applied. What
is needed is a mechanism for separating call sites with different usage.

The solution to the problem is to give the function a usage polymorphic type:

Y uo ug us us | us < ug, us < ug, uz < uq. Int® —¢ Int"t b2 Ingt U g
0 3 0, U3 0, U3

The type is annotated with usage variables and the type schema contains a set of
constraints which restrict how the annotations can be instantiated. A constraint
u < v’ simply specifies that the values instantiated for u must be smaller than
or equal to the values instantiated for u’ where we have the ordering that 1 < w.
This form of polymorphism is usually referred to as constrained polymorphism
or bounded polymorphism.

In our example, us < ug enforces that if a partial application of plus3 to
one argument is used more than once then that first argument is also used more
than once. Similarly, us < ug and ug < u; makes sure that if we partially apply
plus3 to two arguments and use it more than once then both these arguments
are used more than once.

3 This example is due to Wansbrough and Peyton Jones [WPJ00]



3.1 Degrees of Polymorphism

There are many different forms of parametric polymorphism. In this paper we
consider three different systems where usage generalization takes place at let-
bindings.

— An analysis with monomorphic recursion in the style of ML. Intuitively, this
gives the effect of a monomorphic analysis where all non-recursive calls have
been unwound.

— An analysis with polymorphic recursion [Myc84,Hen93,DHM95]. Intuitively,
this gives the effect of the previous analysis where recursion has been (in-
finitely) unwound.

— An analysis where the form of type schemas are restricted so that generalized
usage variables may not be constrained. A consequence of the restriction is
that an implementation need not instantiate (i.e., copy) a potentially large
constraint set whenever the type is instantiated. Wansbrough and Peyton
Jones [WPJ00] suggested this in the context of usage analysis and called it
stmple usage polymorphism.

With simple usage polymorphism it is not possible to give plus3 the type

Vg ug ug us | us < ug, us < ug, us < uypdnt® —@ Int™ U2 Intt —us g
0 3 0, U3 0, U3

because the generalized variables ug, w1, ug, ug are all constrained. Instead
we can give it the type

V. Int® —% Int* —* Intt —* Int*

where we have unified the generalized variables into one. This type is clearly
worse but it gives a degree of context sensitivity. An alternative is to give it
a monomorphic type. For example

Int® —¥ Int' —¢ Int' =1 Int*.

These types are incomparable and an implementation needs to make a heuris-
tic choice. We use the heuristic proposed by Wansbrough [Wan02] to general-
ize the types of all exported functions and give local functions monomorphic

types.

The analyses include usage subtyping; use an aggressive treatment of algebraic
data types and are compatible with separate compilation (i.e., we analyze the
modules of the program one by one in the same order as GHC). We discuss and
evaluate all these features later on.

3.2 Evaluation

The results are shown in Figure 1, which shows the average effectiveness of each
analysis.
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Fig. 1. Measurements of polymorphism

The most striking observation is that the results are very different depending
on whether GHC’s optimizing program transformations are turned on or off.
The effectiveness is much lower with program transformations turned on. While
we have yet to make any detailed studies of this phenomenon we here suggest
some possible explanations. Firstly, one possible contributor to this phenomenon
is GHC’s aggressive inliner [PJM99]. There is no need to create closures for
the arguments of inlined function calls and thus many targets for the analysis
disappears. The net effect is that the proportion of difficult cases (such as closures
in data structures and calls to unknown functions) increases which reduces the
effectiveness.

Another explanation is strictness analysis [Myc82]. Strictness analysis can
decide that the argument of a function is guaranteed to be used at least once
(in any terminating computation). In those cases there is no need to suspend
the evaluation of that argument. If an argument is used exactly once then it is
a target for both strictness and usage analysis. When the strictness analysis (as
part of GHC’s program transformation) is run first it removes some easy targets.

Our measurements also show that the polymorphic analyses are significantly
better than the monomorphic one. Polymorphic recursion turns out to have
hardly any effect compared to monomorphic recursion. Simple polymorphism
comes half way on unoptimized code — it is significantly better than monomor-
phism but significantly worse than constrained polymorphism, which shows that
it can serve as a good compromise. This is, however, not the case for optimized
code.

The largest surprise to us was that the accuracy of the monomorphic analysis
is relatively good. This seems to contradict the results reported by Wansbrough
and Peyton Jones [WPJ00] who implemented and evaluated the monomorphic
analysis from [WPJ99]. They found that the analysis was almost useless in prac-
tice and concluded that it was the lack of polymorphism that caused the poor
results. We do not have a satisfactory explanation for this discrepancy.



4 Subtyping

Consider the following code fragment.
letz="1+2in ...

Here u is the usage annotation associated with the closure for 1 + 2.

The analysis can take u to be 1 if and only if x is used at most once. That
is assured by giving x the type Int'. The type system then makes sure that the
program is well typed only if z is actually used at most once.

If we on the other hand take u to be w then x has the type Int®. It is always
sound to annotate a closure with w regardless of how many times it is used. We,
therefore, want the term to be well typed regardless of how many times x is
actually used. The solution is to let Int“ be a subtype of Int*. That is, if a term
has the type Int* we may also consider it to have the type Int?.

Subtyping makes the system more precise. Consider the function f.

fxy =ifz*x > 100 then x else y
It seems reasonable that we should be able to give it, for example, the type
Int® —% Int* —* Int'.

This type expresses that if the result of the function is used at most once then
the second argument is used only once. The first argument is, however, used at
least twice regardless of how many times the result is used.

To derive this type we must have usage subtyping. Otherwise, the types of
the branches of the conditional would be incompatible — x has type Int* and y
has the type Int'. With subtyping we can consider z to have the type Int!.

Without subtyping = and y has to have the same type and the type of the
function must be

Int® —* Int* —* Int*

which puts unnecessary demands on .
Subtyping can also give a degree of context sensitivity. Consider, for example,
the following program.

let fr=x4+1
a=1+2
b=3+4

in fa+fb+b

Here, b is used several times and is given the type Int®. Without subtyping nor
polymorphism we would have to give a the same type and the two call sites
would pollute each other.

When subtyping is combined with polymorphism it naturally leads to con-
strained polymorphism. Note, however, that subtyping is not the only source of
inequality constraints in a usage analysis. Inequality constraints are also used for
the correct treatment of partial application (see Section 3) and data structures.
Thus, we use constrained polymorphism also in the systems without subtyping.
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Fig. 2. Measurements of subtyping

4.1 Evaluation

We have evaluated two systems without subtyping — a polymorphicly recursive
and a monomorphic analysis. Both analyses use an aggressive treatment of data
types and are compatible with separate compilation. Figure 2 shows the average
effectiveness of each analysis. We have included the system with polymorphic
recursion and subtyping and the monomorphic system with subtyping from Sec-
tion 3 for an easy comparison.

The results show that the accuracy of the monomorphic system without
subtyping is poor. The precision is dramatically improved if we add subtyping
or polymorphism. Our explanation is that both polymorphism and subtyping
gives a degree of context sensitivity which is crucial.

The polymorphic system without subtyping is in principle incomparable to
the monomorphic system with subtyping. However, in practice the polymorphic
system outperforms the monomorphic one. The difference is much smaller when
the analyses are run on optimized code which is consistent with our earlier
observation that context sensitivity becomes less important because of inlining.

The combination of subtyping and polymorphism has a moderate but sig-
nificant effect when compared to polymorphic analysis without subtyping. The
effect is relatively larger on optimized code. The explanation we can provide is
that the proportion of hard cases - which requires the combination — is larger
because the optimizer has already dealt with many simple cases.

5 Algebraic data types

An important issue is how to deal with data structures such as lists and user
defined data types. In this section we evaluate some different approaches.

Let us first consider the obvious method. The process starts with the user
defined data types which only depend on predefined types. Suppose T is such a
type.

dataTa=C17| ... |C,T



The types on the right hand side are annotated with fresh usage variables. If there
are any recursive occurrences they are ignored. The type is then parameterized
on these usage variables, u.

dataTua=Cy 1) | ... |Cp7h

Finally, any recursive occurrence of T is replaced with 7' u. The process con-

tinues with the remaining types in the type dependency order and when 7T is

encountered it is replaced with T' u’ where u’ is a vector of fresh variables. If

there are any mutually recursive data types they are annotated simultaneously.
As an example consider the following data type for binary trees:

data Tree oo = Node (Tree o) (Tree o) | Leaf «
When annotated, it contains three annotation variables:

data Tree (ko, k1, k2) a = Node (Tree (ko, k1, k2) a)* (Tree (ko, k1, ko) a)*
| Leaf a2

This approach is simple and accurate and we used it in all the analyses in
the previous sections. The net effect is equivalent to a method where all non-
recursive occurrences in a type are first unwound. As a result the number of
annotation variables can grow exponentially. An example of this is the following
data type:

data Ty (ko) = C Int*®
data Ty (ko, ki1, ko, k3) = C" (To (k1)) | C" (Tp (ks))*2

data T, (ko, ..., kn) = C! (Tn_1 {...))k0 | O (Th_q (...))kms2

Here T,, will contain O(2™) usage variables.

In practice, the number of required variables sometimes grows very large.
The largest number we have encountered was a type in the Glasgow Haskell
Compiler which required over two million usage annotations. As a consequence
a single subtyping step leads to over two million inequality constraints and our
implementation simply could not deal with all those constraints. This problem
was the reason for why we had to exclude the program veritas from our study.
It is clear that an alternative is needed and we tried two different ones.

The first approach was to put a limit on the number of usage variables which
are used to annotate a type. If the limit is exceeded then we simply use each
variable several times on the right hand side of the type. We do not try to do
anything clever and when we exceed the limit we simply recycle the variables
in a round robin manner. This approach leads to ad-hoc spurious behavior of
the analysis when the limit is exceeded but maintains good accuracy for small
types. We tried this approach with a limit of 100, 10 and 1.

The second approach was to simply annotate all types on the right hand side
with only w. The effect is that information is lost when something is inserted
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into a data structure — the analysis simply assumes the worst about its usage.
Intuitively this can be thought of as a special case of the approach above where
the limit is zero.

All the analyses used for measuring the treatment of data types have subtyp-
ing and polymorphic recursion and are compatible with separate compilation.

5.1 Evaluation

The average effectiveness of each analysis is shown in Figure 3.

The results are quite different for optimized and unoptimized code. In the
case of unoptimized code there is a clear loss in precision when we limit the
number of annotation variables. The loss is quite small when the limit is 100
but quite dramatic when the limit is only 10. Going further and annotating with
only one or no variables has a smaller effect.

The situation is different for optimized code. Here there is only a small dif-
ference when the number of variables are limited to 100 or 10. But there is a
noticeable effect when one or no variables are used.

We believe that this effect stems from Haskell’s class system. When Haskell
programs are translated into Core each class context is translated to a so called
dictionary parameter. A dictionary is simply a record of the functions in an
instance of a class. Large classes leads to large records of functions which are
passed around at run time. When the number of annotations are limited, it sub-
stantially degrades the precision for these records. Presumably, most dictionaries
require more than 10 variables but less than 100 which explains the effect for
unoptimized code.

These records are often eliminated by GHC’s program transformations which
tries to specialize functions for each particular instance [Jon94,Aug93]. Thus, in
optimized code there are not so many large types which explains why the effect
of limiting the number of variables to 10 is quite small.



6 Whole Program Analysis

So far all the analyses have been compatible with separate compilation. In this
section we consider whole program analysis.

Suppose that f is an exported library function where the closure created for
z' is annotated with wu.

fr=letax ="z +1lin)y.z +y

In the setting of separate compilation we have to decide which value u should
take without knowledge of how f is called. In the worst case, f is applied to one
argument and the resulting function is applied repeatedly. The closure of z’ is
then used repeatedly so we must assume the worst and let u be equal to w. We
can then give f the type

Intt =% Intt =¥ Int®

With separate compilation we must make sure that the types of exported func-
tions are general enough to be applicable in all contexts. That is, it must still be
possible to annotate the remaining modules such that the resulting program is
well typed. Luckily, this is always possible if we ensure that the types of all ex-
ported functions have an instance where the positive (covariant) positions in the
type are annotated with w. In the type of f this is reflected in that the function
arrows and the resulting integer are annotated with w. Wansbrough and Peyton
Jones [WPJO0O] calls this process pessimization. Further discussion can be found
in Wansbrough’s thesis [Wan02].

In the setting of whole program analysis this process in unnecessary which
improves the result of the analysis. We have chosen to evaluate the effect on two
analyses, the polymorphicly recursive analysis with subtyping and the monomor-
phic analysis with subtyping. Both analyses use the aggressive treatment of data

types.

6.1 Evaluation

The average effectiveness for each analysis is shown in Figure 4. They show that
whole program analysis improves both analyses significantly on both unopti-
mized and optimized code.

The effect is greater for the monomorphic analysis. The explanation is that
the inaccuracies that are introduced by the pessimization, needed for separate
compilation, spreads further in the monomorphic analysis due to the lack of con-
text sensitivity. One can think of pessimization as simulating the worst possible
calling context which then spreads to all call sites.

An interesting observation is that there is only a small difference between
the polymorphic and the monomorphic whole program analysis for optimized
code. The combination of aggressive inlining and whole program analysis almost
cancels out the effect of polymorphism.
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7 Related Work

The usage analyses in this paper build on the type based analyses in
[TWM95,Gus98, WPJ99,WPJ00,GS00,Wan02]. The use of polymorphism in us-
age analysis was first sketched in [TWM95] and was developed further in [GS00]
and [WPJ00,Wan02] where simple polymorphism was proposed. Usage subtyp-
ing was introduced in [Gus98,WPJ99]. The method for dealing with data types
was suggested independently by Wansbrough [Wan02] and ourselves [Ged03].
The method for dealing with separate compilation is due to Wansbrough and
Peyton Jones [WPJ99].

The measurements of Wansbrough and Peyton Jones on their monomorphic
analysis with subtyping and a limited treatment of data types showed that is was
”almost useless in practice”. Wansbrough later made thorough measurements of
the precision of simple usage polymorphism with some different treatments of
data types in [Wan02]. He concludes that the accuracy of the simple usage poly-
morphism with a good treatment of data types is reasonable which is consistent
with our findings. He also compares the accuracy with a monomorphic usage
analysis but the comparison is incomplete — the monomorphic analysis only has
a very coarse treatment of data types.

Foster et al [FFA00Q] evaluate the effect of polymorphism and monomorphism
on Steensgaard’s equality based points-to analysis [Ste96] as well as Andersen’s
inclusion based points-to analysis [And94]. Their results show that the inclusion
based analysis is substantially better than the unification based. Adding poly-
morphism to the equality based analysis also has a substantial effect but adding
polymorphism to the inclusion based analysis gives only a small improvement.

There are clear analogies between Steensgaard’s equality based analysis and
usage analysis without subtyping. Andersen’s inclusion based analysis relates to
usage analysis with subtyping. Given these relationships, our results are con-
sistent with the results of Foster et al with one exception — the combination
of polymorphism and subtyping has a significant effect in our setting. However,
when we apply aggressive program transformations prior to the analysis and run
it in whole program analysis mode then our results coincide.



8 Conclusions

We have performed a systematic evaluation of the impact on the accuracy of
four dimensions in the design space of a type based usage analyses for Haskell.
We evaluated

— different degrees of polymorphism: polymorphic recursion, monomorphic re-
cursion, simple polymorphism and monomorphism,

— subtyping versus no subtyping,
— different treatments of user defined types, and

— whole program analysis versus analysis compatible with separate compila-
tion.

Our results show that all of these features individually have a significant effect
on the accuracy. A striking outcome was that the results depended very much
on whether the analyzed programs were first subject to aggressively optimizing
program transformations. A topic for future work would be to investigate how
much each optimization affects the analysis result.

Our evaluation of polymorphism and subtyping showed that the polymorphic
analyses clearly outperform their monomorphic counterparts. The effect was
larger when the analyses did not incorporate subtyping. This is not surprising
given that subtyping gives a degree of context sensitivity and, thus, partially
overlaps with polymorphism. Polymorphic recursion turned out to give very
little when compared to monomorphic recursion. For unoptimized code, simple
polymorphism (where variables in types schemas cannot be constrained) was
shown to lie in between monomorphism and constrained polymorphism.

The measurements also showed that the treatment of data types is important.
The effectiveness of the different alternatives turned out to depend on whether
the code was optimized or not. We believe that the explanation is coupled to the
implementation of Haskell’s class system and, thus, that this observation might
be rather Haskell specific.

Whole program analysis turned out to have a rather large impact. The ef-
fect was greater for monomorphic analysis. The reason is that the conservative
assumptions, that have to be made in the setting of separate compilation, have
larger impact due to the lack of context sensitivity in monomorphic analysis. In
fact, the whole program monomorphic analysis with subtyping was almost as
good as the whole program polymorphic analysis with subtyping on optimized
programs.

Finally we note that the effectiveness of even the most precise analysis seems
quite poor. For unoptimized code the best figure is 57% and for optimized code
the top effectiveness is a poor 19%. Is this because we have used an imprecise
measure or because of fundamental limitations of the form of usage analysis used
in this paper? We leave this question for future investigation.
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