
A Case Study on the Scalability of a Constraint Solving

Algorithm: Polymorphic Usage Analysis with Subtyping

Tobias Gedell

September 29, 2003

Abstract

It is commonly believed that polymorphic program analyses with subtyping are too compu-
tationally expensive to be feasible. Recent work has shown that a class of analyses having
polymorphism and subtyping can be implemented in worst case cubic time. It is however
unclear how often the worst case behaviour is exhibited in practice and it might be the case
that they in practice are cheap enough to be feasible.

The aim of this thesis is to evaluate how a recently proposed constraint solving algorithm
behaves in practice on real world programs. In order to do so a type based polymorphic
usage analysis with subtyping is designed for a real world functional language. Previous
usage analyses have either been designed for toy languages or have not been equipped with
both subtyping and full-blown polymorphism. The analysis handles the complete language
Core which is the intermediate language of the Glasgow Haskell Compiler. The analysis has
been implemented and used to analyse a number of programs taken from the nofib suite which
is a standard test suite consisting of real world programs. The constraints generated from
these programs have been used to measure the scalability of the constraint solving algorithm.
The results of the measurements are promising but not conclusive, the constraint solving
algorithm is shown to scale up for all but two tested programs.

Foreword

This report is submitted as a Master’s thesis in the Computer Science and Engineering
programme at Chalmers University of Technology. The work has been carried out during the
autumn of 2002 and spring of 2003 at the Computer Science Department.

I would like to thank my supervisor Jörgen Gustavsson for taking me under his wings. He
has been a huge source of inspiration and has always taken the time to discuss things with
me when I have needed to. I would also want to thank Josef Svenningsson who has worked
as my second supervisor. It has been a pleasure to work together with Jörgen and Josef!

Finally I would like to thank John Hughes. He was the person that during my first
year as an undergraduate student made me interested in functional programming and later
encouraged me when I felt that I wanted to dig deeper into it. It was during this period that
I began to feel that I wanted to be a graduate student. Without John this might not have
happened, thank you John!

Contents

1 Introduction 1

1.1 Usage analysis . 2

1.1.1 Lazy evaluation . 2

1.1.2 Unnecessary updates . 3

1.1.3 A solution . 3

1.1.4 Further applications of usage analysis 4

1.2 Type based usage analysis . 4

1.2.1 Subtyping . 5

1.2.2 Usage polymorphism . 6

1.3 Outline . 7

2 Usage Analysis 9

2.1 Source language . 10

2.1.1 Syntax . 10

2.1.2 Typing rules . 10

2.2 Adding usage annotations . 11

2.3 Constraint language . 14

2.4 Type translation . 15

2.5 Subtyping . 15

2.6 Typing rules . 17

2.6.1 Typing rules for values . 17

2.6.2 Typing rules for expressions . 18

2.6.3 Typing rule for let expressions . 19

2.7 Soundness . 20

3 Adding Data Types 21

3.1 Source language . 22

3.2 Annotating data types . 24

3.2.1 Type translation . 25

3.2.2 Annotating type definitions . 25

3.3 Variance . 26

3.3.1 Inferring variance . 28

3.4 Subtyping . 31

3.5 Typing rules . 32

3.5.1 Typing rules for values . 33

3.5.2 Typing rules for expressions . 36

i

3.5.3 Typing rules for case alternatives . 37
3.5.4 Typing rule for let expressions . 37

4 Measurements 39

4.1 Setup . 39
4.2 Programs . 39
4.3 Haskell versus Core . 39
4.4 Analysis . 40

4.4.1 Constraint generation . 40
4.4.2 Constraint solver . 43

5 Related Work 47

5.1 Usage analysis . 47
5.2 The constraint copying problem . 47

6 Conclusion and Future Work 49

ii

List of Figures

2.1 Source language . 9

2.2 Source type language . 10

2.3 Typing rules . 11

2.4 Annotated source language . 12

2.5 Annotated type language . 12

2.6 Constraint language . 15

2.7 Type translation rules . 15

2.8 Subtyping rules . 16

2.9 Typing rules for values . 17

2.10 Occur function . 18

2.11 Typing rules for expressions . 19

2.12 Typing rule for let expressions . 20

3.1 Source type language . 22

3.2 Annotated source language . 23

3.3 Annotated type language . 24

3.4 Type translation rules . 26

3.5 Type definition annotation rules . 27

3.6 Variance and operators . 28

3.7 Variance inference rules . 29

3.8 Type definition variance inference rules . 30

3.9 Subtyping rules . 31

3.10 Program typing rules . 32

3.11 Typing rules for values . 33

3.12 Occur function . 34

3.13 Typing rules for expressions . 35

3.14 Typing rules for case alternatives . 36

3.15 Typing rule for let expressions . 37

4.1 Lines of Core code versus lines of Haskell code 40

4.2 Constraint generation times . 41

4.3 Constraint generation time versus lines of Core code 42

4.4 Constraint AST-nodes versus lines of Core code 42

4.5 Solving times . 44

4.6 Solving time versus constraint size . 45

4.7 Solving time versus lines of Haskell code . 45

4.8 Solving time versus lines of Core code . 45

iii

iv

Chapter 1

Introduction

It is often difficult to make program analyses scale up in both precision and speed. This is es-
pecially true for analyses working on functional languages where context-insensitive analyses
often are too crude due to the high degree of code reuse. One example of this is the monomor-
phic usage analysis of Wansbrough and Peyton Jones [WPJ99], which when implemented was
shown to be almost useless in practice [WPJ00].

The difference between a context-insensitive and context-sensitive analysis is that the
latter takes the context into account. As an example consider an analysis analysing function
calls where a context-sensitive analysis would treat multiple calls to a function independently
taking the local context into account. A context-insensitive analysis would instead create a
single approximation of all multiple calls. This approximation may or may not have a big
impact on the precision depending on how many multiple calls there are. For a functional
language it would however most probably lead to a dramatic decrease of precision. The reason
is that one in functional languages tend to write many functions which are called from many
places within a program. It has been said that a function to a functional programmer is what
a macro is to a C-programmer.

For the type of analyses which this thesis is about one way of doing them context-sensitive
is by adding subtyping and polymorphism. What it means for a usage analysis to be poly-
morphic is not that the underlying type system is polymorphic but instead that the usage
information is polymorphic. This allows us to create a unique instantiation of the usage in-
formation for each context where it is used and thus avoiding a mixup of different contexts
leading to decreased precision.

When implementing analyses based on subtyping one often divides the analyses into two
parts. The first part analyses a program and generates constraints which express the pro-
gram’s properties. The second part solves the generated constraints yielding a solution which
is the result of the analysis. Solving the constraints generated from analyses having both sub-
typing and polymorphism has been considered being too computationally expensive. Solving
this kind of constraints has recently been addressed by Rehof and Fähndrich [Reh01] and
Gustavsson and Svenningsson [GS01a]. They show that a class of polymorphic program anal-
yses based on inequality constraints can be implemented in worst case cubic time but it is
believed that the worst case behaviour is rarely exhibited in practice.

The work resulting in this thesis focus on evaluating a constraint solving algorithm pro-
posed by Gustavsson and Svenningsson. The algorithm is described in the unpublished pa-
per [GSG03]. In order to evaluate the algorithm we design a polymorphic usage analysis

1

with subtyping for a real world language chosen to be Core, the intermediate language of
the Haskell compiler GHC. Previous analyses, such as [LGH+92, TWM95, Gus98, WPJ99,
WPJ00, GS01a], have been designed for toy languages or have not been equipped with both
subtyping and full-blown polymorphism. The usage analysis is used to analyse a collection
of real world programs. The generated constraints are then used to measure the scalability
of the constraint solving algorithm. The results presented in Chapter 4 are promising, the
constraint solving algorithm scales up for all but two tested programs.

The three steps are here summarised:

1. Design a usage analysis for the language Core.

2. Implement the usage analysis.

3. Measure how the constraint solver scales up for real-world programs.

How the precision of the usage analysis scales up in precision goes beyond the work
presented in this thesis. It is however a very interesting topic and is left as future work.

1.1 Usage analysis

In this section we describe what usage analysis is. We start by giving an introduction to lazy
evaluation and why it is sometimes unnecessary slow. We then present an analysis which
solves this problem and argue for why we believe that it is important that such an analysis
has both polymorphism and subtyping.

1.1.1 Lazy evaluation

The key idea behind lazy evaluation is that computations should not be evaluated before they
are needed (this is why it is called lazy evaluation) and that a computation should be shared
by all its successive uses. Consider the following example.

let x = 1 + 2
y = 3 + 4

in x + x

When starting to evaluate this program the computations for x and y will be stored in
the program memory, called the heap, but they will not yet be evaluated. When reaching the
expression x+ x we see that we need the value of x. We then get the computation for x from
the heap and evaluate it, yielding the value 3. We now update x with this value. When we
later need the value of x the second time we do not need to perform any calculation since x
now consists of the value 3.

The exact evaluation of the example above goes as follows:

1. The computation for x is stored on the heap

2. The computation for y is stored on the heap

3. The computation for the left occurrence of x is taken from the heap

4. The computation for x is evaluated, yielding the result 3

2

5. The computation for x in the heap is updated with the value 3

6. The value for the right occurrence of x is taken from the heap (which is now 3)

7. The expression 3 + 3 is evaluated yielding the result

The fifth step in the evaluation makes sure that the value of x is computed only once.
Just as x, all variables which are used many times need to be updated. It is important to
notice that since y was never needed its value was never evaluated.

Lazy evaluation allows the programmers to focus more on what they want to compute
instead of in which order it should be computed. It also allows for the use of structures such
as infinite lists which are impossible to use in strict1 languages like ML.

1.1.2 Unnecessary updates

One inefficiency of lazy evaluation is that updating is not always needed. If we for example
have a variable which is used only once then there is no need to update it once its computation
has been evaluated. Doing this would only impose an unnecessary cost. Consider the following
example.

let x = 1 + 2
in x + 5

In the example we see that the value of x will only be needed once. Updating x with the
value 3 would therefore be unnecessary.

How common are unnecessary updates? Measurements by Marlow [Mar93] have shown
that in the Haskell implementation which he used as many as 70% of all updates are unnec-
essary and that these unnecessary updates stands for up to 20% of the total running time of
a program.

By knowing which variables that are going to be used only once we could omit updating
these variables and thus make programs run faster. But how do we know how many times a
variable is going to be used? This is what usage analysis figures out.

1.1.3 A solution

In order to find out how many times each variable in a program is used we introduce uses

which we attach to bindings and values. Consider the following example.

let x = 1 + 2
y = 3 + 4

in x + y + y

Here x would be annotated with 1 denoting that the binding is used only once. y would
be annotated with ω denoting that the binding will be used many times. 1 and ω can thus
be seen as upper limits of the usage when the program is executed.

Adding annotations to the example given above gives:

let x
1
= 11 + 21

y
ω
= 31 + 41

in x + y + y

1Here strict refers to call-by-value semantics.

3

Note that even if the binding for y is used many times and annotated with ω the values 3
and 4 are used only once since the binding will be updated with the value of 3+ 4. Therefore
these two values, 3 and 4, will indeed be used only once.

One important observation about usage analysis is that it is undecidable to infer the exact
usage of all variables2. Therefore no usage analysis can infer the exact usage information,
instead an approximation is calculated.

The approximation that is calculated must be safe. Since we want to use the usage
information to avoid unnecessary updates we must ensure that a variable used many times
is never annotated as being used only once. If it is annotated as being used only once
then it would never be updated when its computation is computed. This would lead to the
computation being computed every time the variable is needed. The other way around, that a
value used only once is marked as being used many times is, besides being unwanted, however
safe. An unnecessary update would be performed but no work will be duplicated.

1.1.4 Further applications of usage analysis

Besides update avoidance usage information allows for a number of optimisations:

• Inlining If a binding is known to be used only once it can safely be inlined at its use
site.

• Floating If a lambda abstraction surrounded by a binding is used at most once the
binding may safely be floated inwards. What we gain by doing this is that the binding
will never be allocated if the abstraction is never called and even if it is called we will
delay the allocation, which could save some memory.

• Full laziness The full laziness transformation is the opposite of the floating trans-
formation described above. It tries to move bindings out of lambda abstractions. If
an abstraction is used many times then moving bindings out of that abstraction would
allow these bindings to be shared by all successive applications, leading to reduced work.

If a lambda abstraction is used only once this translation will not gain anything but
instead introduce an extra cost. By using usage information we can avoid performing
this transformation for these abstractions.

Let-floating transformations are described in more detail in [PJPS96].

1.2 Type based usage analysis

In this thesis we define our usage analysis as a type based program analysis. A type based
program analysis can be seen as an extension to the underlying type system. The typing rules
are extended to not only infer types but also usage information.

It is therefore natural that we do not just want to annotate bindings and values but also
their types. A function taking an integer, which will be used more than once, and returning
an integer, which also will be used more than once, would for example have the following
annotated type3: Intω → Intω, where the omegas has the meaning as described above.

2This can be proved by using the halting problem.
3Later, when defining our usage analysis, types will sometimes have two layers of usage annotations.

4

1.2.1 Subtyping

What it means for a type τ0 to be a subtype of τ1 is that we can safely consider a value of
type τ0 as being of type τ1. An example of this is that Int is a subtype of Float in a language
where an integer automatically can be converted into a floating point number. We will write
”Int is a subtype of Float” as Int ≤ Float.

We will create a subtyping relation for usage annotated types. If we have a value of type
Intω we know that it is allowed to use this value many times. It is however important to
understand that when we are allowed to used it many times we are also allowed to use it only
once. We may therefore safely treat a value of type τω as if it was of type τ1 which gives that
τω ≤ τ1. We can generalise this rule to get the following rule,

Sub
τ0 ≤ τ1 π1 ≤ π0

τπ0

0 ≤ τπ1

1

which says that τπ0

0 is a subtype of τπ1

1 if τ0 is a subtype of τ1 and π1 is less than or equal to
π0. This requires an order for annotations and we define it as 1 < ω. Note that we use ≤ to
denote both subtyping for types as well as less-then-or-equal for annotations.

We are now ready to look at an example where subtyping is needed. Consider the following
example.

let x = 1 + 2
y = sq x

in [x, y]

We can see that x will be annotated with ω since it is used many times. The usage of y is
dependent on how the list [x, y] will be used. If the list and its elements are only used once it
would be safe to annotate y with 1. It is in lazy languages common to use intermediate lists
whose elements are used only once and we therefore assume that this is also the case with our
list. One property of lists is that all elements must be of the same type. Either all elements
must be annotated with ω or all elements must be annotated with 1. This gives us a problem
since x has the type Intω and we would want y to have the type Int1. The solution to this
problem is obvious when we have subtyping. By using subtyping we can, since Intω ≤ Int1,
subtype x’s type to Int1. The type of the list will then be (List Int1)1. We can from this
example draw the conclusion that subtyping is often needed in places where different types are
tied together and forced to be equal. If we did not have subtyping we would in the example
above be forced to annotate y with ω.

The premise π1 ≤ π0, found in the Sub rule above, is called a constraint. Since the
constraint do not force the annotations π0 and π1 to be equal it is an inequality constraint.

It is important to note that we cannot implement subtyping without having inequality
constraints. But as we shall see, we do also need inequality constraints for another reason.

Consider the following example (where we have omitted the annotations on the values)
and assume that we only have equality constraints.

let x
k0= 1 + 2

f
k1= λz. x + 4

in sq x + f 5

Here k0 and k1 denote not yet known annotations. We do however know that if k1 is equal
to ω then so must k0 (since x occurs inside the lambda abstraction). If we only have equality

5

constraints, we must introduce the following constraint:

k1 = k0

We can clearly see that x is used more than once and must therefore introduce the following
constraint:

ω = k0

When trying to find the least solution for these constraints we will get the solution k0 =
k1 = ω which is not the solution we want. Note that even if x is used more than once this
does not force f to be used more than once. In the example f is indeed used only once. The
problem lies within the constraints, they cannot express that k1 should be ω if k0 is ω but
not the other way around.

We solve this problem by using inequality constraints. We can now express the desired
meaning by the following constraints,

k1 ≤ k0

ω ≤ k0

which when solved gives the expected least solution k0 = ω, k1 = 1.

1.2.2 Usage polymorphism

Usage polymorphism is needed to express interdependencies between usage annotations within
a type. This is best illustrated by an example (where we once again omit the annotations on
the values):

let apply
ω
= λf. λx. f x

sq
1
= λx. x ∗ x

id
1
= λx. x

x
k0= 1 + 2

y
k1= 3 + 4

in apply sq x + apply id y

In this example we assume that we know that apply is used many times and that sq and
id is used only once. What we want to find out is the usages of x and y. Since we are working
with a type based analysis we want to infer the types of all bindings. But what should the
type of apply be? If the function given as the first argument, f , uses its argument, x, more
than once then the type of apply could be ∀α. ∀β. (αω → β1)1 → αω → β1. Which expresses
that the second argument must be annotated as being used more than once.

If, on the other hand, the function f uses its argument only once we may give the apply
function the type ∀α. ∀β. (α1 → β1)1 → α1 → β1 where the second argument is annotated
as being used only once.

Now let us assume that we do not have usage polymorphism. We have two possible types
for apply but which one should we choose? In the example above we see that apply is applied
to both sq which uses its argument twice and id which uses its argument once. Since we know
that at least one function (the sq function) passed to apply uses its argument more than once
we have to choose the type where the second argument is annotated with ω.

6

Now, when inferring the usage of x and y we see that k0 must be equal to ω but what
about k1? Since we know that id will only use its argument once it would be safe to set k1

to 1 but we cannot do that! The reason for why is that the type of apply forces the second
argument to be annotated with ω regardless of what the passed function is.

What we would want is a way of expressing that the annotation on the second argument
depends on what the first argument is. One way of doing that is to introduce polymorphism.
By using polymorphism we can state the type of apply as ∀k. ∀α. ∀β. (αk → β1)1 → αk → β1.
In the type we have introduced a universally quantified usage variable, k. When this function
is used the usage variable is instantiated to either ω or 1. We see that by instantiating it to
ω we get the type used when applied to sq and by instantiating it to 1 we get the type used
when applied to id. This allows us to have a single type which can handle both the case with
the sq function and the case with the id function.

This is however not the exact form of usage polymorphism we will use, we will instead use
bounded polymorphism. Bounded polymorphism is like the polymorphism described above
except for the addition of constraints. The constraints are on the form k ≤ j which is read
as ”if k is ω than j must also be ω”. The type of apply using bounded usage polymorphism
becomes ∀k, j : k ≤ j. ∀α. ∀β. (αk → β1)1 → αj → β1.

What makes analyses with both subtyping and polymorphism computationally expensive
is that every time a polymorphic binding is used its type is instantiated yielding a fresh set
of constraints. This can lead to an exponential blowup in the size of the constraints if one do
not treat it carefully.

1.3 Outline

In Chapter 2 we present a somewhat simplified version of the source language, the constraint
language and a usage analysis for the simplified language. In Chapter 3 we extend the source
language with user defined data types and present a usage analysis for the extended language.
In Chapter 4 we present the results of the measurements of the constraint solver. In Chapter
5 we describe related work and finally in Chapter 6 we draw our conclusion and propose
future work.

7

8

Chapter 2

Usage Analysis

In this chapter we define a type based usage analysis for Core [Tol01], the intermediate
language of the Glasgow Haskell Compiler (GHC). Core is a language which is similar to the
language Fω of Girard [Gir72]. It has polymorphism as well as higher-kinded types. The
differences between Core and Fω is that Core has general recursion but also a more limited
type system. In Core the only way to introduce type abstraction over types is by the use of
type definitions.

We remove algebraic data types from the language to make the presentation more com-
prehensible. Algebraic data types demand subtle treatment and are dealt with in Chapter
3. In the spirit of making a comprehensible presentation we also omit some other construc-
tions: notes, literals (except integers), calls to external functions and the coerce construction.
These constructions do not impose any difficulties for the analysis and can therefore safely be
omitted. The remaining language is like System-F with the extension that it has recursion.

Values v ::= λx : δ.e abstraction
| n integer literal

Expressions e ::= v value
| x variable
| e x application
| Λα.e generalisation
| e@δ instantiation

| let ~x : ~δ = ~e in e binding block

Programs p ::= main e main expression

Figure 2.1: Source language

9

Types δ ::= α type variable
| Int integer
| δ → δ function type
| ∀α.δ universal quantification

Figure 2.2: Source type language

2.1 Source language

2.1.1 Syntax

The source language is presented in Figure 2.1. The language has, besides the usual construc-
tions, explicit type generalisation and type instantiation.

The let construction binds a group of mutually recursive bindings. Each binding in the
group is explicitly typed.

We introduce a syntactic restriction on the language, application arguments must be
variables. This is by now a standard restriction [Jon92, Mar93, TWM95, GS01a] and we
have it because it makes the typing rules of the analysis easier. It is easy to transform an
arbitrary program into a program obeying this restriction. Our analysis moves every non-
variable argument into a binding block, binding the value to a variable. For example, the
following application

f (1 + 2)

will be translated into

let x = 1 + 2 in f x

where x is a fresh variable.

The type language for the source language is presented in Figure 2.2, where we let α range
over type variables. There is nothing unusual with this type language. Since we do not have
data types we have removed higher kinded types and type application from the type language.
This will be introduced later in Chapter 3.

2.1.2 Typing rules

In Figure 2.3 we present the typing rules for the source language. Since we have removed
higher order types there is no need for kinds in the rules. The typing environment, Γ, is a
function from variables to their types. We let Γ, x : δ denote the environment Γ extended
with the mapping from the variable x to the type δ.

In the rules found in this thesis we will sometimes allow ourselves to use vector notation.
Instead of writing judgements like

Γ ⊢ ei : δi for all 1 ≤ i ≤ |~e|

we will write

Γ ⊢ ~e : ~δ

This makes the rules more compact but requires that the reader is careful when reading the
rules.

10

Abs
Γ, x : δ0 ⊢ e : δ1

Γ ⊢ (λx : δ0. e) : δ0 → δ1

Var
Γ ⊢ x : δ

Γ(x) = δ Lit
Γ ⊢ n : Int

App
Γ ⊢ e : δ0 → δ1

Γ ⊢ e x : δ1
Γ(x) = δ0

Gen
Γ ⊢ e : δ

Γ ⊢ (Λα. e) : ∀α.δ
α 6∈ fv(Γ) Inst

Γ ⊢ e : ∀α.δ1

Γ ⊢ e@δ0 : δ1[δ0/α]

Let
Γ, ~x : ~δ ⊢ ~e : ~δ Γ, ~x : ~δ ⊢ e : δ

Γ ⊢ let ~x : ~δ = ~e in e : δ

Figure 2.3: Typing rules

We will use the property that a program is well typed. If a program can be derived a type
by using the typing rules, we will consider it being well typed.

When performing the usage analysis we will always assume that the input program is
well typed. This assumption is reasonable since the analysis can be thought of as an internal
phase in the compiler taking place after type checking. Possible type errors would be caught
during type checking and would never reach the usage analysis phase.

2.2 Adding usage annotations

The aim of the usage analysis is to find an approximation of the usage of all values and
bindings. These usages will when the analysis is done be stored in the source program and
then later used by program transformations or in the code generation to avoid unnecessary
updates.

In order to store the annotations in the source program we extend the source language
with usage annotations on both values and bindings. We let π range over uses. A binding
or value annotated with 1 is interpreted as being used only once, while ω is interpreted as
possibly being used many times. 1 and ω should be seen as upper bounds of the usage. The
annotated source language is presented in Figure 2.4.

When starting to analyse a program it will be an unannotated source program. The first
thing we do is that we annotate the program with annotation variables on all values and
bindings. These annotation variables will later be replaced with their inferred uses.

We have two kinds of variables, type annotation variables which are used to annotate
types and program annotation variables which are used to annotate the program. The reason
for having these two kinds of annotation variables is that it makes the typing rules more
comprehensible.

Type annotation variables k
Program annotation variables j

Uses π ::= 1 | ω | k | j

11

Values v ::= λx : δ.e abstraction
| n integer literal

Expressions e ::= vπ annotated value
| x variable
| e x application
| Λα.e generalisation
| e@δ instantiation

| let ~x : ~δ
~π
= ~e in e binding block

Programs p ::= e : δ main expression

Figure 2.4: Annotated source language

Value types ρ ::= α type variable
| Int integer
| σ → τ function type
| ∀α.ρ universal quantification

Expression types τ ::= ρπ

Binding types σ ::= τπ

Type schemas χ ::= ρ

| (∀~k.ρ | Π)

Figure 2.5: Annotated type language

The first stage of the analysis types the program using the usage typing rules which
generates constraints for all annotation variables. If for example the usage of a variable x
depends on the usage of another variable y, we say that y’s usage constrains the usage of
x. In order to express these constraints we need a constraint language, which is presented in
Section 2.3.

When the program has been analysed we have an annotated program containing annota-
tion variables together with a constraint term which constrains the annotation variables in the
program. Solving this constraint term gives us an assignment of annotation variables to 1:s
and ω:s. What we want is the least solution and in order to find it we use a constraint solver.
The constraint solver that we have chosen to use is the constraint solver which scalability we
want to study.

We also extend the type language with usage annotations. The annotated type language
is presented in Figure 2.5. In the language we let Π range over constraints which will be
introduced in section 2.3. We allow ourselves to let α, β and γ range over type variables in
both the unannotated type language and the annotated type language. This will however not
cause any confusion since the context will make clear what language we are referring to.

12

In the type language we have four different types:

• Value types - The types of values in head normal form: abstractions and integers.

• Expression types - The types of expressions. These types have an usage annotation
telling the usage of the contained value. If an expression is of type Int and the value is
known to be used more than once the expression type would be Intω.

• Binding types - The types of bindings. The binding types consist of an expression
type together with an additional usage annotation telling the usage of the binding. An
binding which is used more than once holding an integer value which is used more than
once would have the type Intωω, while a binding used only once containing a value which
is used many times would have the type Intω1 .

• Type schemas - These are value types which may contain universally quantified anno-
tation variables together with the constraints constraining them. All bindings are given
a type scheme together with two usage annotations. When a binding is used its type
scheme is instantiated to a binding type.

The reason for having these levels of types is that it offers us increased precision. By
assuming that a binding type only has one usage annotation we can understand that we
cannot make a difference between how many times the binding is going to be used and how
many times the value of the binding is going to be used. Consider the following example:

let x = 1 + 2
y = id x

in sq y

In this example we see that y will be used twice and the binding must therefore be annotated
with ω. But what about x? We see that the value of x will be used twice since y will contain
the value of x. But the binding of x will only be used once! Why is that? The answer lies
in the updating mechanism. When y is first evaluated it will evaluate id x, which evaluates
to 3, and then update y with this value. The second time y is evaluated the result 3 is
fetched without needing to evaluate x again. Therefore x is only evaluated once although y
is evaluated twice.

If the type of x only had one usage annotation this would be forced to be the upper bound
of the value’s usage and the binding’s usage and since the value is used more than once the
type would be annotated with ω, which we know is an unnecessary imprecise annotation.

By using our levels of types we can correctly handle these cases. Remember that a binding
type has two annotations where the first holds the usage of the value and the second the usage
of the binding. In our type language we would simply give x the type Intω1 and y the type
Intωω.

Value types

ρ ::= α | Int | σ → τ | ∀α.ρ

consist of type variables, integers, functions and universally quantified value types. Functions
take variables of binding types (recall the syntactic restriction on application) and return
values of expression types.

13

Type schemas

χ ::= ρ | (∀~k.ρ | Π)

can be seen as quantified value types. Each binding has a type scheme, χπ
π′ , which holds the

most general type. When a binding is used its type scheme is instantiated, yielding a binding
type, σ. When the type scheme is instantiated fresh annotation variables, ~k′, are used to
instantiate the value type, ρ, and the constraints, Π. The instantiation rule, ≺, is defined as
follows.

⊤ ⊢ ρ ≺ ρ

Π[~π/~k] ⊢ (∀~k.ρ | Π) ≺ ρ[~π/~k]

2.3 Constraint language

The constraint language presented in Figure 2.6 is the language described in [GS01a]. The
language contains atomic constraints definitions of constraint abstractions, calls to constraint
abstractions and existential quantification.

What makes the constraint language different from other constraint languages, and what
is also its strength, is the constraint abstractions. Constraint abstractions are used to solve
the problem with polymorphic analyses which sometimes have to duplicate constraints. A
constraint abstraction can be seen as a function from variables to constraints. Consider the
following example:

let f0 = ... in

let f1 = ... f0 ... f0 ... in

let f2 = ... f1 ... f1 ... in

...

When generating the constraints for the function f0 we might get the constraints Π0. When
generating the constraints for the function f1 we see that it contains two calls to the function
f0. When instantiating the function f0 we get two instantiations of the constraints Π0. Thus
Π1 will contain two copies of the constraints Π0. When generating the constraints for f2 we
see that it will contain two copies of Π1. Here is how the generated constraints would look:

Π0 = ...
Π1 = ... copy of Π0 ... copy of Π0 ...
Π2 = ... copy of Π1 ... copy of Π1 ...

We can by this small example conclude that the constraints can be exponential in the size of
the program.

Constraint abstraction solves this problem. For each function we create a constraint
abstraction containing its constraints. Now instead of instantiating all constraints at each
call site of a function, we instantiate a call to the constraint abstraction containing the
constraints for the function. In this way the constraints and constraint abstractions will
follow the structure of the program and be linear in the size of the explicitly typed program.
The constraints for the example above would now look as this:

let l0 ~k0 = ... in

let l1 ~k1 = ... call to l0 ... call to l0 ... in

let l2 ~k2 = ... call to l1 ... call to l1 ... in

...

14

Constraint terms Π ::= π ≤ π atomic constraint

| let ~φ in Π binding block

| ∃~k.Π existential quantification
| l ~π abstraction call
| Π ∧ Π conjunction
| ⊤ true

Constraint abstractions φ ::= l ~k = Π

Figure 2.6: Constraint language

Var
α →֒ α

Lit
Int →֒ Int

Arrow
δ0 →֒ σ δ1 →֒ τ

δ0 → δ1 →֒ σ → τ
Forall

δ →֒ ρ

∀α.δ →֒ ∀α.ρ

Expr
δ →֒ ρ

δ →֒ ρk
Bind

δ →֒ τ

δ →֒ τk

Figure 2.7: Type translation rules

When a constraint term contains only atomic constraints we will sometimes regard it as
being a set.

The semantics of the constraint language is described in [GS01b].

2.4 Type translation

In Figure 2.7 we define a relation, →֒, between unannotated types and annotated types.
Expression and binding types are annotated with type annotation variables. When translating
types during the analysis we will always use fresh annotation variables. By doing this we
ensure that we will get the principal annotation.

2.5 Subtyping

In Section 1.2.1 we showed the need for subtyping. Here we define a subtyping relation for
annotated types. We first define an ordering for uses, 1 < ω. When defining the subtyping
relation we have to be careful with the annotations residing on expression and binding types.
We want to define a sound subtyping relation and must therefore ensure that for example
Intω is a subtype of Int1. The reason for why Intω is a subtype of Int1 is that a value which
is marked as being used many times can safely be regarded as being used only once. Therefore
we conclude that types are contravariant in the usage annotations. The subtyping rules are
presented in Figure 2.8.

The most important subtyping rules are those for expression and binding types:

Expr
Π0 ⊢ ρ ≤ ρ′ Π1 ⊢ π′ ≤ π

Π0 ∧ Π1 ⊢ ρπ ≤ ρ′π′

15

Var
⊤ ⊢ α ≤ α

Lit
⊤ ⊢ Int ≤ Int

Arrow
Π0 ⊢ σ′ ≤ σ Π1 ⊢ τ ≤ τ ′

Π0 ∧ Π1 ⊢ σ → τ ≤ σ′ → τ ′

Forall
Π ⊢ ρ0 ≤ ρ1

Π ⊢ ∀α.ρ0 ≤ ∀α.ρ1

Expr
Π0 ⊢ ρ ≤ ρ′ Π1 ⊢ π′ ≤ π

Π0 ∧ Π1 ⊢ ρπ ≤ ρ′π′

Bind
Π0 ⊢ τ ≤ τ ′ Π1 ⊢ π′ ≤ π

Π0 ∧ Π1 ⊢ τπ ≤ τ ′
π′

An
π0 ≤ π1 ⊢ π0 ≤ π1

Figure 2.8: Subtyping rules

Bind
Π0 ⊢ τ ≤ τ ′ Π1 ⊢ π′ ≤ π

Π0 ∧ Π1 ⊢ τπ ≤ τ ′
π′

We know that the usage annotations are contravariant and therefore when subtyping ρπ to
ρ′π

′

we subtype π′ to π and ρ to ρ′. The same applies when subtyping binding types.

We do not have general subtyping on type variables, we do however define a type variable
to be a subtype of itself.

The subtyping rule for function types often confuses people at the first glance.

Arrow
Π0 ⊢ σ′ ≤ σ Π1 ⊢ τ ≤ τ ′

Π0 ∧ Π1 ⊢ σ → τ ≤ σ′ → τ ′

What is tricky is that the argument is contravariant. This is however easily understood if
one thinks of what it means to be a subtype. Consider a language with types for integers
and floats where an integer can be converted to a float automatically. In this language a
function returning an integer can easily be subtyped to a function returning a float. This is
the case since an integer can be considered as being a float. When applying this reasoning
to the function argument we see that a function taking a float as argument can be subtyped
to a function taking an integer since the received integer can be considered as being a float
which the function wants. Therefore Float → Int is a subtype of Int → Float.

Consider the rule for universally quantified types:

Forall
Π ⊢ ρ0 ≤ ρ1

Π ⊢ ∀α.ρ0 ≤ ∀α.ρ1

When subtyping two quantified types we first ensure that they quantify the same type variable
(if this is not the case it can easily be done by α-converting the type variables) and then
subtype the inner types.

16

Abs
δ →֒ ρπ1

π0
Π0; Γ, x : ρπ1

π0
⊢ e : τ

Π0 ∧ Π1; Γ ⊢ λx : δ.e : ρπ1
π0

→ τ
(∗)

(∗) Π1 ≡

{

ω ≤ π0 ∧ ω ≤ π1 if occur(x, e) > 1
⊤ otherwise

Int
⊤; Γ ⊢ n : Int

Figure 2.9: Typing rules for values

2.6 Typing rules

The typing environment, Γ, is a function from variables to their annotated type schemas. We
let Γ, x : χπ1

π0
denote the environment Γ extended with the mapping from the variable x to

the annotated type scheme χπ1

π0
.

We are now ready to define the typing rules. The program typing rule

Main
Π; ∅ ⊢ e : τ

Π ⊢ main e

takes an annotated program, main e, and yields the constraint term, Π, constraining all
program annotation variables. A program consists of a main expression, which is typed in
the empty typing environment ∅ by the typing rules defined in the following sections.

The typing rule for values are on the form Π,Γ ⊢ v : ρ taking the typing environment Γ,
the value v and yielding the type ρ and the constraints Π. The form of the typing rules for
expressions are almost identical except that they yield an expression type.

2.6.1 Typing rules for values

The typing rules for values are presented in Figure 2.9.
The rule for abstraction

Abs
δ →֒ ρπ1

π0
Π0; Γ, x : ρπ1

π0
⊢ e : τ

Π0 ∧ Π1; Γ ⊢ λx : δ.e : ρπ1
π0

→ τ
(∗)

(∗) Π1 ≡

{

ω ≤ π0 ∧ ω ≤ π1 if occur(x, e) > 1
⊤ otherwise

is one of the rules where we let textual occurrence constrain the usage of a binding. The occur
function, defined in Figure 2.10, calculates how many textual occurrences a variable has. In
the rule we use the occur function to see if the bound variable, x, occurs more than once in
the expression e. If it does then it may clearly be used more than once and its usage must
be constrained by ω. The side condition does this by forcing the outer usage annotations of
x’s type, π0 and π1, to be constrained by ω if x occurs more than once in e.

The rule for integer literal
Int

⊤; Γ ⊢ n : Int

is trivial. All integer literals are of the type Int.

17

Values occur(x, λy : δ.e) =

{

0 if x = y
occur(x, e) otherwise

occur(x, n) = 0

Expressions occur(x, vπ) = occur(x, v)

occur(x, y) =

{

1 if x = y
0 otherwise

occur(x, e y) = occur(x, e) + occur(x, y)
occur(x,Λα.e) = occur(x, e)
occur(x, e@δ) = occur(x, e)

occur(x, let ~x : ~δ
~π
= ~e in e) =

{

0 if x ∈ {~x}
(
∑

occur(x, ei)) + occur(x, e) otherwise

Figure 2.10: Occur function

2.6.2 Typing rules for expressions

The typing rules for all expressions except let are presented in Figure 2.11.
The rule Value

Value
Π0; Γ ⊢ v : ρ

Π0 ∧ π′ ≤ π ∧ Π1; Γ ⊢ vπ : ρπ′
(∗)

(∗) Π1 ≡
∧

x∈fv(v)

(

π′ ≤ π0 ∧ π′ ≤ π1 where Γ(x) = χπ1

π0

)

takes care of annotating values. If a value has the type ρπ′

where π′ is ω then it means that
the value can possibly be used more than once. If this is the case we must also ensure that
all free variables of the value can also be used more than once. The side condition ensures
that the outer usage annotations of all free variables of the value are constrained by the value
usage, π′. The constraint π′ ≤ π ensures that the program annotation residing on the value
is constrained by the annotation on the type.

The rule for variables

Var
Π; Γ, x : χπ1

π0
⊢ x : ρπ1

Π ⊢ χ ≺ ρ

is simpler. We instantiate the binding type but holds on to the annotation π1. By doing this
we ensure that if the instantiated value is used more than once this will propagate back to
the annotation on the variable’s type scheme.

The application rule

App
Π0; Γ ⊢ e : (σ → τ)π

Π0 ∧ Π1 ∧ Π2; Γ ⊢ e x : τ

Γ(x) = χπ1

π0

Π1 ⊢ χ ≺ ρ
Π2 ⊢ ρπ1

π0
≤ σ

needs to both instantiate the argument type and subtype it to the argument type of the
function. If the function uses its value more than once then the binding annotation in σ will
be ω. This propagates to the binding annotation on χ by the subtyping in the second side
condition.

18

Value
Π0; Γ ⊢ v : ρ

Π0 ∧ π′ ≤ π ∧ Π1; Γ ⊢ vπ : ρπ′
(∗)

(∗) Π1 ≡
∧

x∈fv(v)

(

π′ ≤ π0 ∧ π′ ≤ π1 where Γ(x) = χπ1

π0

)

Var
Π; Γ, x : χπ1

π0
⊢ x : ρπ1

Π ⊢ χ ≺ ρ

App
Π0; Γ ⊢ e : (σ → τ)π

Π0 ∧ Π1 ∧ Π2; Γ ⊢ e x : τ

Γ(x) = χπ1

π0

Π1 ⊢ χ ≺ ρ
Π2 ⊢ ρπ1

π0
≤ σ

Gen
Π;Γ ⊢ e : ρπ

Π;Γ ⊢ Λα.e : (∀α.ρ)π
α 6∈ fv(Γ)

Inst
δ →֒ ρ0 Π;Γ ⊢ e : (∀α.ρ1)

π

Π;Γ ⊢ e@δ : ρ1[α := ρ0]π

Figure 2.11: Typing rules for expressions

2.6.3 Typing rule for let expressions

The typing rule for let expressions, presented in Figure 2.12, is rather complex and we will

go through it step by step. When typing the expression let ~x : ~δ
~π
= ~e in e we start by

translating the unannotated types ~δ into the annotated types ~ρ. We proceed by creating the
typing environment Γ′ which consists of the typing environment Γ extended with the type
schemas of the bindings. Each type scheme is quantified over the annotation variables ~ki and
consists of the annotated type ρi and a call to the constraint abstraction li. This is done by
the first side condition where also each binding is given the annotation variables π′

i and π′′
i .

We type all the expressions ~e in the environment Γ′ yielding the constraints ~Π3 and the
types ~ρ′~π

′′′

. These types are subtyped to the types ~ρ ~π′′

yielding the constraints ~Π4.

We may now existentially quantify annotation variables which appear in the constraints
Π3i and Π4i to obtain ∃~k′

i.Π3i ∧ Π4i. We do however require that the variables in ~k′
i do not

occur free elsewhere in the judgement. This is ensured by the fourth side condition. We form
the type abstractions φi consisting of the constraints ∃~k′

i.Π3i ∧ Π4i where we have bound the

annotation variables ~ki. The third side condition ensures that the annotation variables ~ki do
not occur free elsewhere in the judgement.

The fifth side condition ensures that the binding annotations π′
i constrains the program

annotations πi. The sixth side condition ensures that if a binding occurs at more than one
place its annotations, π′

i and π′′
i , are constrained by ω.

Finally we type the expression e in the environment Γ′ yielding the constraints Π2 and
the type τ .

19

Let
~δ →֒ ~ρ ~Π3; Γ

′ ⊢ ~e : ~ρ′
~π′′′

Π2; Γ
′ ⊢ e : τ

Π0 ∧ Π1 ∧ let ~φ in Π2; Γ ⊢ let ~x : ~δ
~π
= ~e in e : τ

(∗)

(∗)

Γ′(y) ≡

{

(∀~ki.ρi | li ~ki)
π′′

i

π′

i

if y = xi

Γ(y) otherwise

~ki 6∈ fav(Γ′, π′′
i)

~k′
i 6∈ fav(Γ′, ρ

π′′

i

i)

φi ≡ (li ~ki = ∃~k′
i.Π3i ∧ Π4i) where Π4i ⊢ ρ′

π′′′

i

i ≤ ρ
π′′

i

i

Π0 ≡
∧

(π′
i ≤ πi)

Π1 ≡
∧

{

ω ≤ π′
i ∧ ω ≤ π′′

i if occur(xi, e) +
∑

occur(xi, ei) > 1
⊤ otherwise

Figure 2.12: Typing rule for let expressions

2.7 Soundness

What it means for a usage analysis to be sound is that the evaluation of a well typed program
do not go wrong. What this mean for our usage analysis is simply that the analysis must not
annotate a binding used many times as being used only once.

In order to prove our usage analysis being sound we must define an operational semantics
for the source language and carry out a rather substantial proof. We choose to omit this
in this thesis and instead refer to a soundness proof done for an analysis similar to the one
presented here. The soundness proof can be found in [Gus99].

20

Chapter 3

Adding Data Types

In this chapter we introduce user defined data types which require a rather subtle treatment.
We start by giving an example of how such a data type can look. Consider the following
definition.

List α = Nil | Cons α (List α)

This is the well known list data type. The type definition says that a list containing elements
of type α is either empty, in which case the list consists of the constructor Nil, or it contains
at least one element in which case the list consists of the constructor Cons followed by the
first element and the rest of the list. The list containing the numbers 1, 2 and 3 is thus
encoded as shown by the following expression.

Cons 1 (Cons 2 (Cons 3 Nil))

The type variable α in the type definition is said to be a type parameter. By having
type parameters we allow data types to be polymorphic. The List type can for example be
instantiated to hold integers as well as any other type of values. A list containing integers has
the type (List Int) whereas a list holding characters has the type (List Char). One way to
look at the type parameters is to consider the constructors being universally quantified over
the type parameters. The type for Nil would then be (∀α.List α) while the type for Cons
would be (∀α.α → List α → List α).

In our source language, constructors may not only have universally quantified types but
also existentially quantified types. One example of a type having a constructor with an
existentially quantified type is the following example.

PlaceHolder α = ∃β.Elem β (β → α)

In this example the type PlaceHolder has the type parameter α and the constructor Elem. The
constructor is existentially quantified over β. An Elem value therefore has an element of the
existentially quantified type β together with a function from this type to the parameterised
type α. A value of the type (PlaceHolder String) would be a place holder for a value of
an unknown (existentially quantified) type and a function taking a value of this type into a
string.

21

Types δ ::= α type variable
| T type constructor
| δ → δ function type
| ∀α.δ universal quantification
| δ δ type application

Figure 3.1: Source type language

3.1 Source language

We extend the type language with type constructors, which are ranged over by T , and type
applications. Type application is needed to handle higher kinded types.

Having type constructors we no longer need to have a special type for integers as we had in
Chapter 2. Instead we create a nullary type constructor for integers which we name Int. The
type language extended with type constructors and type application is presented in Figure
3.1.

We proceed by introducing data types in the annotated source language, yielding the
language presented in Figure 3.2. What we add is constructor values, case expressions, case
alternatives and type definitions. In the source language we let C range over constructors.

Type definitions

td ::= T ~α = ts1 | ... | tsn

consist of a type constructor, T , a vector holding all type parameters, ~α, and a number of
type summands.

Type summands

ts ::= ∃~β.C ~δ

consist of a constructor, C, a vector of existentially quantified type variables, ~β, and the types
of the constructor arguments, ~δ.

When dealing with constructor values we must know both the type parameters and the
witnesses (the instantiations of the existentially quantified type variables). Therefore con-
structor values

C ~δ ~δ ~x

consist of the constructor arguments and two type vectors, where the first vector holds the
type parameters and the second vector holds the witnesses.

The same applies to constructor alternatives in case expressions, which must bind both
the existentially quantified types and the constructor arguments. There is however no need
to hold the universally quantified variables since they are not local for each constructor.

Case expressions have an unusual feature. The case expression

case e of (x : δ) ~alt

evaluates the expression e and binds the variable x to the value of e. The variable x can then
be used by the case branches. Since x is a different kind of variable which is always bound to
already evaluated values it has no usage annotation.

22

Values v ::= λx : δ.e abstraction
| n integer literal

| C ~δ ~δ ~x constructor value

Expressions e ::= vπ annotated value
| x variable
| e x application
| Λα.e generalisation
| e@δ instantiation

| let ~x : ~δ
~π
= ~e in e binding block

| case e of (x : δ) ~alt case

Alternatives alt ::= C ~β ~x ⇒ e constructor alternative
| n ⇒ e literal alternative
| ⇒ e default alternative

Type definitions td ::= T ~α = ts1 | ... | tsn

Type summands ts ::= ∃~β.C ~δ

Programs p ::= data ~td in p type definitions
| main e main expression

Figure 3.2: Annotated source language

23

Value types ρ ::= α type variable
| T ~π type constructor
| σ → τ function type
| ∀α.ρ universal quantification
| ρ ρ type application

Expression types τ ::= ρπ

Binding types σ ::= τπ

Type schemas χ ::= ρ

| (∀~k.ρ | Π)

Figure 3.3: Annotated type language

In the annotated type language, presented in Figure 3.3, the type constructors have been
extended with a vector of annotations. These annotations holds the usage information for
the constructor arguments in the type definition. We will explain this in more detail in the
following sections.

3.2 Annotating data types

Before inferring the usage information for a program we must first annotate the type defini-
tions. An annotated type definition

Type definitons utd ::= T ~k ~α = uts1 | ... | utsn

Summand uts ::= C ~β ~σ

has binding types for all its constructor arguments, ~σ, and a vector, ~k, containing the usage
annotation variables used to annotate the constructor arguments.

Here is an example showing the usage annotated version of the List type:

List k0 k1 k2 k3 α = Nil | Cons αk1

k0
(List k0 k1 k2 k3 α)k3

k2

When annotating the type definition each constructor argument is annotated with fresh an-
notation variables. These variables form the ~k vector which is used to annotate the recursive
call in the type definition. Note that for the example above ~k = k0 k1 k2 k3. One important
restriction that we impose on type definitions is that there must not be any annotation vari-
ables in the right hand side that is not an element of the annotation variable vector ~k, in the
left hand side.

When annotating recursive data types we always annotate the recursive occurrences using
the annotation variables found in the left hand side. Here is an example of an annotated type
definition containing two recursive calls:

Tree k0 k1 k2 k3 k4 k5 α = Leaf | Node αk1
k0 (Tree k0 k1 k2 k3 k4 k5 α)k3

k2

(Tree k0 k1 k2 k3 k4 k5 α)k5
k4

24

The same applies when annotating mutually recursive type definitions. All type definitions
in the mutually recursive group is annotated using the same annotation variables in the left
hand side. Here is an example of two annotated data types being mutually recursive:

Zig k0 k1 k2 k3 k4 k5 k6 k7 α = ZigStop | Zig αk1
k0 (Zag k0 k1 k2 k3 k4 k5 k6 k7 α)k3

k2

Zag k0 k1 k2 k3 k4 k5 k6 k7 α = ZagStop | Zag αk5
k4 (Zig k0 k1 k2 k3 k4 k5 k6 k7 α)k7

k6

There are different ways of annotating recursive type definitions and the strategy we use
is probably not the best. One possible way of improving the annotation is to have more than
one vector of annotation variables in the left hand side and use them differently depending
on if the type definitions is recursive or not, where the recursion occurs and so on. In the
analysis presented in this thesis we will however only use one vector of annotation variables.

3.2.1 Type translation

In Figure 3.4 we define the relation, →֒, between unannotated types and annotated types.
Since we have extended the type language with type constructors we must know how to
annotate each type constructor. We can annotate a type constructor in two ways. We either
annotate it using fresh annotation variables or annotate it using a fixed vector of annotation
variables. We create the type environment, Ω, which holds information of how each type
constructor should be annotated.

Type environment Ω ::= Ω,Ω

| T →֒ T ~k

| T →֒ ∀~k.T ~k

If a type constructor, T , should be annotated using fresh annotation variables then the type
environment will contain (T →֒ ∀~k.T ~k), which we refer to as a quantified constructor trans-
lation. If the type constructor should be annotated using a fixed vector ~k of annotation
variables then the type environment will contain (T →֒ T ~k), which we will refer to as just a
constructor translation. The need for these two different ways of annotating type constructors
will be made clear in the next section where the formal rules for annotating data definitions
are presented.

3.2.2 Annotating type definitions

The rules for annotating type definitions are presented in Figure 3.5.

The rule for annotating a group of mutually recursive type definitions

TDefs
Ω,Ω0 ⊢ ~td →֒ ~utd

Ω ⊢ ~td →֒ ~utd : Ω1

(∗)

(∗)
Ω0 ≡ {T →֒ T ~k | T ∈ dom(~td)}

Ω1 ≡ {T →֒ ∀~k.T ~k | T ∈ dom(~td)}

takes the type environment Ω, containing the constructor translations for the already anno-
tated type definitions, and the type definitions ~td. When annotating the type definitions we

25

Var
Ω ⊢ α →֒ α

Trans
Ω ⊢ T →֒ T ~k

(T →֒ T ~k) ∈ Ω

Q-Trans
Ω ⊢ T →֒ T ~k′

(T →֒ ∀~k.T ~k) ∈ Ω

|~k′| = |~k|

Arrow
Ω ⊢ δ0 →֒ σ Ω ⊢ δ1 →֒ τ

Ω ⊢ δ0 → δ1 →֒ σ → τ
Forall

Ω ⊢ δ →֒ ρ

Ω ⊢ ∀α.δ →֒ ∀α.ρ

App
Ω ⊢ δ0 →֒ ρ0 Ω ⊢ δ1 →֒ ρ1

Ω ⊢ δ0 δ1 →֒ ρ0 ρ1

Expr
Ω ⊢ δ →֒ ρ

Ω ⊢ δ →֒ ρπ
Bind

Ω ⊢ δ →֒ τ

Ω ⊢ δ →֒ τπ

Figure 3.4: Type translation rules

first create the type environment Ω0 containing type translations for all type constructors,
defined in ~td, to the fixed vector of annotation variables ~k. We annotate all type definitions
in the type environment Ω extended with Ω0 yielding the annotated type definitions ~utd. It
is important to remember the restriction that there must not be any annotation variable in
the right hand side of a type definition that is not an element of the annotation variable
vector. This restriction forces all type definitions in a group to be annotated with the same
annotations variables, ~k.

Finally we create the type environment Ω1 where all constructor translations have been
quantified and return this environment in conjunction with the annotated type definitions.

A more detailed explanation of how data type definitions are annotated can be found in
the Master’s thesis of Josef Svenningsson [Sve00].

3.3 Variance

In order to extend the subtyping relation with type constructors we need the notion of vari-
ance. To just naively extend the subtyping relation would not work since the source language
allows for recursive types. We cannot inductively define a subtyping relation without breaking
the recursion in some way. Consider the following type definition:

DTree α = DNode α (DTree (α,α))

When subtyping the type (DTree τ) to the type (DTree τ ′) we unwind the types and subtype
the components yielding

τ ≤ τ ′ DTree (τ, τ) ≤ DTree (τ ′, τ ′)

When continuing to unwind the types we get

τ ≤ τ ′ (τ, τ) ≤ (τ ′, τ ′) DTree ((τ, τ), (τ, τ)) ≤ DTree ((τ ′, τ ′), (τ ′, τ ′))

in which we can unwind the tuple types to get

τ ≤ τ ′ τ ≤ τ ′ τ ≤ τ ′ DTree ((τ, τ), (τ, τ)) ≤ DTree ((τ ′, τ ′), (τ ′, τ ′))

26

Sum
Ω ⊢ ~δ →֒ ~σ

Ω ⊢ C ~β ~δ →֒ C ~β ~σ

TDef
Ω ⊢ ~ts →֒ ~uts (T →֒ T ~k) ∈ Ω

Ω ⊢ T ~α = ts1 | ... | tsn →֒ T ~k ~α = uts1 | ... | utsn

TDefs
Ω,Ω0 ⊢ ~td →֒ ~utd

Ω ⊢ ~td →֒ ~utd : Ω1

(∗)

(∗)
Ω0 ≡ {T →֒ T ~k | T ∈ dom(~td)}

Ω1 ≡ {T →֒ ∀~k.T ~k | T ∈ dom(~td)}

Figure 3.5: Type definition annotation rules

We can see that when trying to subtype this type we will be unfolding it infinitely.

Instead of actually performing the unfolding we calculate an approximation of what sub-
typing constraints that would be created when unfolding the type. We can for the example
above see that the only unique subtyping constraint that will be created is that τ should be
a subtype of τ ′. We therefore say that the type parameter of DTree has positive variance. If
the generated subtyping constraint instead was that τ ′ should be a subtype of τ we would
say that the type parameter had negative variance. When now subtyping two DTree types
we do not need to unfold the types. Instead we look at the variance of the type parameter
and use it to create the subtyping constraints.

Variance is based on the concept of positive and negative positions. We will here explain
this concept by giving an example. Consider the following type.

(α → β) → γ

We start from the right and say that γ occurs at a positive position. We continue to the
left and each time we pass a function arrow we negate the current position sign. This gives
that β occurs at a negative position while γ and α occur at positive positions. We extend
this concept to include usage annotated types in a similar fashion. We do however note that
since usage annotations on types are contravariant we must negate the position sign for usage
annotations. In the following type

αk1

k0
→ βk2

β, k0 and k1 occur at positive positions while α and k2 occur at negative positions.

When a variable occurs at a positive position it is said to be covariant (+), as opposite
to a negative position which is said to be contravariant (−). If a variable occurs at both a
positive and negative position it is said to be bivariant (±) while if it does not occur at all it
is said to be zerovariant (0).

We define variance together with some operators in Figure 3.6 where also a partial ordering
is defined, forming a lattice.

27

Variance γ ::= 0 zerovariant
| + covariant
| − contravariant
| ± bivariant

Negation 0̄ = 0 +̄ = − −̄ = + ±̄ = ±

Product 0 · γ = 0 + · γ = γ − · γ = γ̄ ± · γ =

{

0 ; γ = 0
±

Lattice

±

+

~~~~~~~

−

@@@@@@@

0

@@@@@@@@

~~~~~~~~

Figure 3.6: Variance and operators

3.3.1 Inferring variance

When inferring variance we need to know the variance of all type parameters in the previously
annotated type definitions. Without knowing this we would not be able to handle applications
of type constructors correctly. In order to do this we extend the type environment Ω to
include the variance of annotation variables and type parameters of type definitions. In the
type environment T ~γ ~γ′ stands for that the type constructor T has annotation variables with
the variance ~γ and type parameters with the variance ~γ′.

Type environment Ω ::= Ω,Ω

| T →֒ T ~k

| T →֒ ∀~k.T ~k
| T ~γ ~γ′

Types

In Figure 3.7 we present the rules for inferring the variance of type and annotation variables
in types. The rules are on the form Ω;Υ ⊢ t ⋄ γ. Given the type, t, the variance, γ, and the
type environment, Ω, we infer the variance of all type and annotation variables and put it in
Υ.

We let Υ range over type and annotation variables together with their variance.

Variance env. Υ ::= αγ | kγ | Υ,Υ

28

Var
Ω;Υ, αγ ⊢ α ⋄ γ′

γ′ ≤ γ AVar
Ω;Υ, kγ ⊢ k ⋄ γ′

γ′ ≤ γ

Arrow
Ω;Υ ⊢ σ ⋄ γ̄ Ω;Υ ⊢ τ ⋄ γ

Ω;Υ ⊢ σ → τ ⋄ γ
Forall

Ω;Υ, α± ⊢ ρ ⋄ γ

Ω;Υ ⊢ ∀α.ρ ⋄ γ

App
Ω;Υ ⊢ ρ ⋄ γ Ω;Υ ⊢ ρ′ ⋄ ±

Ω;Υ ⊢ ρ ρ′ ⋄ γ

Tycon
Ω;Υ ⊢ k′

i ⋄ (γ · γi) Ω;Υ ⊢ ρj ⋄ (γ · γ′
j)

Ω;Υ ⊢ T ~k′ ~ρ ⋄ γ
(T ~γ ~γ′) ∈ Ω

Expr
Ω;Υ ⊢ ρ ⋄ γ Ω;Υ ⊢ k ⋄ γ̄

Ω;Υ ⊢ ρk ⋄ γ
Bind

Ω;Υ ⊢ τ ⋄ γ Ω;Υ ⊢ k ⋄ γ̄

Ω;Υ ⊢ τk ⋄ γ

Figure 3.7: Variance inference rules

The rule for type variables

Var
Ω;Υ, αγ ⊢ α ⋄ γ′

γ′ ≤ γ

says that if we want the type variable α to have the variance γ′ then αγ , where γ is greater
than or equal to γ′, must be an element of the variance environment. The use of γ is necessary,
if we would force αγ′

to be an element of the variance environment we would not be able to
handle variables that occur at both positive and negative positions. That can now be solved
by observing that − ≤ ± and + ≤ ±. What will happen is that the variables occurring at
both positive and negative positions will have their variance inferred to ±.

The rule for annotation variables is almost identical to the one for annotation variables
and need no further explanation.

As described in Section 3.3 we must, when passing a function arrow,

Arrow
Ω;Υ ⊢ σ ⋄ γ̄ Ω;Υ ⊢ τ ⋄ γ

Ω;Υ ⊢ σ → τ ⋄ γ

negate the variance for the argument. The negated variance is denoted γ̄.

When introducing a universally quantified type variable we assume that it is bivariant.

Forall
Ω;Υ, α± ⊢ ρ ⋄ γ

Ω;Υ ⊢ ∀α.ρ ⋄ γ

In an application where the type constructor is unknown

App
Ω;Υ ⊢ ρ ⋄ γ Ω;Υ ⊢ ρ′ ⋄ ±

Ω;Υ ⊢ ρ ρ′ ⋄ γ

29

Sum
Ω;Υ, ~β± ⊢ ~σ ⋄ +

Ω;Υ ⊢ C ~β ~σ

TDef
Ω;~k~γ , ~α~γ′

⊢ ~ts

Ω ⊢ T ~k ~α = ts1 | ... | tsn : T ~γ ~γ′

Figure 3.8: Type definition variance inference rules

we do not know how the argument will be used, it could occur at both positive and negative
positions. We must therefore force the argument type to be bivariant. This reduces the
precision, if the argument is only used at positive positions, and therefore safely could be
regarded as being covariant we would still force it to be bivariant.

An example of an application with an unknown type constructor is the following Haskell
type definition.

data App (f :: ∗ → ∗) v = App (f v)

Here the variance of v would be inferred to ± since the type constructor, f , is unknown.
When applying a known type constructor, like the type constructor List, we can do better.

The variance of all type and annotation variables are available in the annotated type definition.
For each annotation variable we infer the product of the given variance, γ, and the variance
of the variable found in the type definition, γi. This means that for all annotations ki we will
infer the variance (γ · γi). We do the same for the type parameters, ~ρ.

Tycon
Ω;Υ ⊢ k′

i ⋄ (γ · γi) Ω;Υ ⊢ ρj ⋄ (γ · γ′
j)

Ω;Υ ⊢ T ~k′ ~ρ ⋄ γ
(T ~γ ~γ′) ∈ Ω

It is important to notice that there is an overlap between the App and the Tycon rule. This
is resolved by always choosing the Tycon rule when applying a known type constructor and
otherwise use the App rule.

The rules for expression and binding types are trivial. The annotation variables residing
on binding and expression types get the negated variance of their host types.

Type definitions

Now we turn to type definitions. The rules for inferring the variance of type and annotation
variables in type definitions are presented in Figure 3.8.

The rule for inferring variance in a type summand is straightforward.

Sum
Ω;Υ, ~β± ⊢ ~σ ⋄ +

Ω;Υ ⊢ C ~β ~σ

The constructor arguments occur at positive positions. Since we are not interested in the
variance of the existentially quantified types we assume that they are bivariant.

When inferring variance in a type definition

TDef
Ω;~k~γ , ~α~γ′

⊢ ~ts

Ω ⊢ T ~k ~α = ts1 | ... | tsn : T ~γ ~γ′

30

Var
⊤; Ω ⊢ α ≤γ α

Tycon
Π0; Ω ⊢ πi ≤

γ·γ′

i π′
i Π1; Ω ⊢ ρj ≤

γ·γ′′

j ρ′j

Π0 ∧ Π1; Ω ⊢ T ~π ~ρ ≤γ T ~π′~ρ′
(T ~γ′ ~γ′′) ∈ Ω

App
Π0; Ω ⊢ ρ0 ≤γ ρ′0 Π1; Ω ⊢ ρ1 ≤± ρ′1

Π0 ∧ Π1; Ω ⊢ ρ0 ρ1 ≤γ ρ′0 ρ′1

Arrow
Π0; Ω ⊢ σ′ ≤γ σ Π1; Ω ⊢ τ ≤γ τ ′

Π0 ∧ Π1; Ω ⊢ σ → τ ≤γ σ′ → τ ′

Forall
Π;Ω ⊢ ρ0 ≤γ ρ1

Π;Ω ⊢ ∀α.ρ0 ≤γ ∀α.ρ1

Expr
Π0; Ω ⊢ ρ ≤γ ρ′ Π1; Ω ⊢ π′ ≤γ π

Π0 ∧ Π1; Ω ⊢ ρπ ≤γ ρ′π′

Bind
Π0; Ω ⊢ τ ≤γ τ ′ Π1; Ω ⊢ π′ ≤γ π

Π0 ∧ Π1; Ω ⊢ τπ ≤γ τ ′
π′

An(0)
⊤; Ω ⊢ π0 ≤0 π1

An(+)
π0 ≤ π1; Ω ⊢ π0 ≤+ π1

An(−)
π1 ≤ π0; Ω ⊢ π0 ≤− π1

An(±)
π0 ≤ π1 ∧ π1 ≤ π0; Ω ⊢ π0 ≤± π1

Figure 3.9: Subtyping rules

we infer the variance in all type summands yielding the vectors ~k~γ and ~α~γ′

from which the
variance is returned in the term T ~γ ~γ′.

3.4 Subtyping

In Figure 3.9 we extend the subtyping relation with a rule for application of known type
constructors. This leads to a similar overlap between the App rule and the Tycon rule as
found in the previous section. We solve it in the same way by always choosing the Tycon
rule when trying to subtype an application of a known type constructor and otherwise use
the App rule.

Since subtyping depends on the variance of the annotation variables and type parameters
found in the type definitions we must add the type environment, Ω, to the subtyping rules.

31

Data
Ω ⊢ ~td →֒ ~utd : Ω0 Ω, ~Ω1 ⊢ utdi : ~Ω1 Π,Ω,Ω0,Ω1, ~utd ⊢ p

Π;Ω ⊢ data ~td in p

Main
Π;Ω; ∅ ⊢ e : τ

Π;Ω ⊢ main e

Figure 3.10: Program typing rules

The subtyping judgements are on the form Π;Ω ⊢ τ ≤γ τ ′ where τ and τ ′ are value,
expression or binding types. The rules takes the type environment Ω, the types and the
variance γ and yields the constraints Π. The variance γ is used to control what constraints
we get. If the variance is + we get the usual constraints while if it is - we get the negated
constraints. This is especially useful in the Tycon rule where we let the variance found in
the type definitions control what constraints we get. An example of how it works is that
Π;Ω ⊢ τ ≤+ τ ′ generates the same constraints as Π;Ω ⊢ τ ′ ≤− τ .

When applying a known type constructor

Tycon
Π0; Ω ⊢ πi ≤

γ·γ′

i π′
i Π1; Ω ⊢ ρj ≤

γ·γ′′

j ρ′j

Π0 ∧ Π1; Ω ⊢ T ~π ~ρ ≤γ T ~π′~ρ′
(T ~γ′ ~γ′′) ∈ Ω

we must take the variance of the type variables and annotations into account. The annotations
~π and ~π′ are subtyped using the variances, ~γ′, taken from the type definition. The type
parameters are subtyped using the variances, ~γ′′. Note that this rule works even if the type
constructor is not saturated.

3.5 Typing rules

The typing rules for programs are presented in Figure 3.10.

Some typing rules need the annotated type definitions and we therefore extend the type
environment Ω to also range over annotated type definitions.

When annotating a group of data type definitions ~td we first annotate them yielding the
annotated type definitions ~utd and the type environment Ω0. We then infer the variance of the
annotation variables and type parameters yielding the type environment ~Ω1. Note that the
variance is inferred using this environment. Finally we type the program p in the environment
Ω,Ω0, ~Ω1 extended with the annotated type definitions utd, yielding the constraints Π which
is returned by the rule.

The annotation of the main expression is not affected by the introduction of data types,
except that the type environment Ω has been added to the rule, and is therefore not described
here.

32

Abs
Ω ⊢ δ →֒ ρπ1

π0
Π0; Ω; Γ, x : ρπ1

π0
⊢ e : τ

Π0 ∧ Π1; Ω; Γ ⊢ λx : δ.e : ρπ1
π0

→ τ
(∗)

(∗) Π1 ≡

{

ω ≤ π0 ∧ ω ≤ π1 if occur(x, e) > 1
⊤ otherwise

Lit
⊤; Ω; Γ ⊢ n : Int

Con
Ω ⊢ ~δ0 →֒ ~ρ0 Ω ⊢ ~δ1 →֒ ~ρ1 Ω ⊢ T →֒ T ~π

Π0 ∧ Π1; Ω; Γ ⊢ C ~δ0
~δ1 ~x : T ~π ~ρ0

(∗)

(∗)

Γ(xi) = χi
π1i
π0i

(T ~k ~α = ... | C ~β ~σ | ...) ∈ Ω
~σ′ ≡ ~σ[~α := ~ρ0, ~β := ~ρ1, ~k := ~π]
Π0 ≡

∧

Π0i where Π0i ⊢ χi ≺ ρi

Π1 ≡
∧

Π1i where Π1i; Ω ⊢ ρi
π1i
π0i

≤+ σ′
i

Figure 3.11: Typing rules for values

3.5.1 Typing rules for values

The typing rules for values are presented in Figure 3.11 where we have added a rule for
constructor values.

Con
Ω ⊢ ~δ0 →֒ ~ρ0 Ω ⊢ ~δ1 →֒ ~ρ1 Ω ⊢ T →֒ T ~π

Π0 ∧ Π1; Ω; Γ ⊢ C ~δ0
~δ1 ~x : T ~π ~ρ0

(∗)

(∗)

Γ(xi) = χi
π1i
π0i

(T ~k ~α = ... | C ~β ~σ | ...) ∈ Ω
~σ′ ≡ ~σ[~α := ~ρ0, ~β := ~ρ1, ~k := ~π]
Π0 ≡

∧

Π0i where Π0i ⊢ χi ≺ ρi

Π1 ≡
∧

Π1i where Π1i; Ω ⊢ ρi
π1i
π0i

≤+ σ′
i

When typing C ~δ0
~δ1 ~x we know that ~δ0 are the type parameters, ~δ1 the witnesses and ~x the

constructor arguments. We substitute the given types, ~ρ0 and ~ρ1, for the type parameters
and existentially quantified type variables in the constructor argument types, ~σ, yielding
~σ′. We also substitute the annotations, ~π, for the parameterised annotation variables, ~k. We
then instantiate the type schemas for the constructor arguments and subtype the instantiated
types, together with their outer annotations, to the constructor argument’s types ~σ′.

The type of the constructor value is the type constructor, T , applied to the annotations
~π and the type parameters, ~ρ0.

33

Values occur(x, λy : δ.e) =

{

0 if x = y
occur(x, e) otherwise

occur(x, n) = 0

occur(x,C ~δ0
~δ1 ~x) =

∑

occur(x, xi)

Expressions occur(x, vπ) = occur(x, v)

occur(x, y) =

{

1 if x = y
0 otherwise

occur(x, e y) = occur(x, e) + occur(x, y)
occur(x,Λα.e) = occur(x, e)
occur(x, e@δ) = occur(x, e)

occur(x, let ~x : ~δ
~π
= ~e in e) =

{

0 if x ∈ {~x}
(
∑

occur(x, ei)) + occur(x, e) otherwise

occur(x, case e of (y : δ) ~alt) =
{

occur(x, e) if x = y
occur(x, e) + max occur(x, alti) otherwise

Alternatives occur(x,C ~β ~x ⇒ e) =

{

0 if x ∈ {~x}
occur(x, e) otherwise

occur(x, n ⇒ e) = occur(x, e)
occur(x, ⇒ e) = occur(x, e)

Figure 3.12: Occur function

34

Value
Π0; Γ ⊢ v : ρ

Π0 ∧ π′ ≤ π ∧ Π1; Γ ⊢ vπ : ρπ′
(∗)

(∗) Π1 ≡
∧

x∈fv(v)

(

π′ ≤ π0 ∧ π′ ≤ π1 where Γ(x) = χπ1

π0

)

Var
Π;Ω; Γ, x : χπ1

π0
⊢ x : ρπ1

Π ⊢ χ ≺ ρ

App
Π0; Ω; Γ ⊢ e : (σ → τ)π

Π0 ∧ Π1 ∧ Π2; Ω; Γ, x : χπ1
π0

⊢ e x : τ

Π1 ⊢ χ ≺ ρ
Π2; Ω ⊢ ρπ1

π0
≤+ σ

Gen
Π;Ω; Γ ⊢ e : ρπ

Π;Ω; Γ ⊢ Λα.e : (∀α.ρ)π
α 6∈ fv(Γ)

Inst
Ω ⊢ δ →֒ ρ0 Π;Ω; Γ ⊢ e : (∀α.ρ1)

π

Π;Ω; Γ ⊢ e@δ : ρ1[α := ρ0]π

Case
Ω ⊢ δ →֒ ρ Π0; Ω; Γ ⊢ e : ρ′π

′

Π1; Ω; Γ, x : ρπ
π ⊢ ~alt : ρ ⇒ ~τ

Π0 ∧ Π1 ∧ Π2 ∧ Π3 ∧ Π4; Ω; Γ ⊢ case e of (x : δ) ~alt : τ
(∗)

(∗)
Π2 ≡

{

ω ≤ π if x ∈ fv(~alt)
T otherwise

Π3; Ω ⊢ τi ≤+ τ

Π4; Ω ⊢ ρ′π
′

≤+ ρπ

Figure 3.13: Typing rules for expressions

35

Alt-con
Π0; Ω; Γ,Γ′ ⊢ e : τ

Π0 ∧ Π1; Ω; Γ ⊢ C ~β ~x ⇒ e : T ~π ~ρ0 ⇒ τ
(∗)

(∗)

(T ~k ~α = ... | C ~β ~σ | ...) ∈ Ω

Γ′ ≡ ~x : ~σ[~α := ~ρ0, ~k := ~π]

Π2 ≡
∧

(x:χ
π1
π0

)∈Γ′

{

ω ≤ π0 ∧ ω ≤ π1 if occur(x, e) > 1
T otherwise

Alt-lit
Π;Ω; Γ ⊢ e : τ

Π;Ω; Γ ⊢ n ⇒ e : Int ⇒ τ

Alt-def
Π;Ω; Γ ⊢ e : τ

Π;Ω; Γ ⊢ ⇒ e : ρ ⇒ τ

Figure 3.14: Typing rules for case alternatives

3.5.2 Typing rules for expressions

The typing rules for expressions are presented in Figure 3.13. We have added a typing rule
for case expressions.

When typing a case expression

Case
Ω ⊢ δ →֒ ρ Π0; Ω; Γ ⊢ e : ρ′π

′

Π1; Ω; Γ, x : ρπ
π ⊢ ~alt : ρ ⇒ ~τ

Π0 ∧ Π1 ∧ Π2 ∧ Π3 ∧ Π4; Ω; Γ ⊢ case e of (x : δ) ~alt : τ
(∗)

(∗)
Π2 ≡

{

ω ≤ π if x ∈ fv(~alt)
T otherwise

Π3; Ω ⊢ τi ≤+ τ

Π4; Ω ⊢ ρ′π
′

≤+ ρπ

we type the scrutinee to the type ρ′π
′

which we subtype to ρπ. This is the type which is
used when typing the case alternatives. The rules for typing case alternatives have the form
Π;Ω; Γ ⊢ alt : ρ ⇒ τ where ρ is the type of the scrutinee and τ is the type of the branch. We
type all alternatives and subtype all types of the branches to the type τ which is returned as
the type of the expression.

We must also ensure that if the variable, x, occurs in the case alternatives then its anno-
tation variable, π, is forced to be equal to ω. This is done by the first side condition.

36

Let
Ω ⊢ ~δ →֒ ~ρ ~Π3; Ω; Γ′ ⊢ ~e : ~ρ′

~π′′′

Π2; Ω; Γ′ ⊢ e : τ

Π0 ∧ Π1 ∧ let ~φ in Π2; Ω; Γ ⊢ let ~x : ~δ
~π
= ~e in e : τ

(∗)

(∗)

Γ′(y) ≡

{

(∀~ki.ρi | li ~ki)
π′′

i

π′

i

if y = xi

Γ(y) otherwise

~ki 6∈ fav(Γ′, π′′
i)

~k′
i 6∈ fav(Γ′, ρ

π′′

i

i)

φi ≡ (li ~ki = ∃~k′
i.Π3i ∧ Π4i) where Π4i; Ω ⊢ ρ′

π′′′

i

i ≤+ ρ
π′′

i

i

Π0 ≡
∧

(π′
i ≤ πi)

Π1 ≡
∧

{

ω ≤ π′
i ∧ ω ≤ π′′

i if occur(xi, e) +
∑

occur(xi, ei) > 1
T otherwise

}

Figure 3.15: Typing rule for let expressions

3.5.3 Typing rules for case alternatives

The typing rules for literal and default case alternatives, presented in Figure 3.14, are trivial.
The rule for constructor alternatives is however more subtle.

Alt-con
Π0; Ω; Γ,Γ′ ⊢ e : τ

Π0 ∧ Π1; Ω; Γ ⊢ C ~β ~x ⇒ e : T ~π ~ρ0 ⇒ τ
(∗)

(∗)

(T ~k ~α = ... | C ~β ~σ | ...) ∈ Ω

Γ′ ≡ ~x : ~σ[~α := ~ρ0, ~k := ~π]

Π2 ≡
∧

(x:χ
π1
π0

)∈Γ′

{

ω ≤ π0 ∧ ω ≤ π1 if occur(x, e) > 1
T otherwise

We type the branch expression, e, in the environment, Γ′, where all constructor arguments,
~x, have had their types instantiated with the type parameters ~ρ0 and usage annotations ~π.
We must also, as is done by the last side condition, ensure that all bindings that occur more
than once in the branch expression have their outer annotations constrained by ω.

3.5.4 Typing rule for let expressions

The typing rule for let expressions, presented in Figure 3.15, is not affected by the introduction
of data types except that the type environment Ω has been added and that the subtyping is
indexed with variance.

37

38

Chapter 4

Measurements

4.1 Setup

The measurements have been carried out on an Athlon XP 2000+ equipped with 1.5 GB
internal memory running Gentoo Linux. The machine is besides its higher amount of memory
a standard desktop PC.

All running times are the minimum of three successive runs. The time have been measured
using the GNU time utility. The reported system and user times have been added to get the
running time.

4.2 Programs

We ran the analysis on 33 programs. Most of the programs are taken from the real category in
the nofib suite [Par93]. The nofib suite is a benchmark suite consisting of Haskell programs,
the real category consists of real world programs. We have excluded two programs, HMMS
and PolyGP. HMMS was excluded because it is not a single program, PolyGP because we
could not get it to compile with GHC.

Although being real world programs the nofib programs are medium sized. We have
therefore added five other programs. The programs we have added are: GHC - the Glasgow
Haskell Compiler, which as far as we know is the largest Haskell program, SLC - an interpreter
for a C like language, CoreSA - the usage analysis itself, SSC - a compiler for the lazy
functional language STG and GF - a grammatical framework.

4.3 Haskell versus Core

Since the usage analysis runs on Core programs all Haskell programs must first be translated
into Core. The size of the Core programs resulting from the Haskell programs is shown in
Figure 4.1.

We have chosen to plot all diagrams using logarithmic scales to make them more readable.
Each diagram has a dotted reference line showing the slope that a linear function would have.

In the diagram it is interesting to see that the size of the Core programs seems to be fairly
linear in the size of the Haskell programs. It is known that going from an implicitly typed
program into an explicitly typed program might give an exponential blowup in code size but
as the diagram indicates this does usually not happen in practice.

39

10
1

10
2

10
3

10
4

10
5

10
2

10
3

10
4

10
5

10
6

Haskell LOC

C
or

e
LO

C

Figure 4.1: Lines of Core code versus lines of Haskell code

4.4 Analysis

The analysis is divided into two parts: the constraint generation and the constraint solving.
Results for both parts are presented in the following sections.

4.4.1 Constraint generation

The implementation of the constraint generation should be considered as a prototype. The
emphasis has been on evaluating the scalability of the constraint solver. Since almost no work
has been done on optimising the implementation of the constraint generation there are strong
reasons for believing that it could run considerably faster.

When generating the constraints we had a threshold for how many unique annotation
variables that could be used to annotate a type definition. Without having a threshold
the number of unique annotation variables could increase exponentially and the size of the
constraints would be to large to handle. We have set to threshold to 50 unique annotation
variables. If a type definition requires more annotation variables we start to reuse already
used annotation variables. This will of course lead to reduced precision and different strategies
of reusing the annotation variables will reduce the precision in different ways. We currently
use a strategy that when the threshold is reached replaces all annotation variables of each
variance with a single annotation variable. What we believe is good with this strategy is that
annotation variables with different variance will never be mixed with each other. Whether this
leads to an increased precision is hard to tell and more work needs to be done on evaluating
different strategies.

The running times for the constraint generation are presented in figure 4.2. The columns
in the table contain the number of lines of Haskell code (excluding standard libraries), the
number of Core lines (excluding standard libraries) and the constraint generation time. Gen-
eration time versus lines of code is plotted in Figure 4.3 which shows that the constraint
generation scales up for all tested programs. Constraint size versus lines of Core code is
plotted in Figure 4.4 which shows that the constraint size seems to be almost linear in lines
of Core code. It is however important to remember that lines of code is not an very exact
measure since a code fragment spanning over many lines may generate few constraints while
a code fragment spanning over few lines may generated many constraints.

40

Program Haskell LOC Core LOC Time (s)

rsa 48 902 6.2

grep 104 1358 6.9

maillist 137 522 3.9

compress2 147 1825 9.5

linear 176 10659 40.8

mkhprog 182 1154 5.1

pic 298 6610 30.2

prolog 322 3630 24.4

lift 426 7256 20.1

scs 445 16021 30.6

hidden 456 4693 41.7

gamteb 510 7804 45.3

compress 549 1679 15.1

infer 561 4886 43.8

gg 635 11156 32.3

bspt 708 15001 59.5

fem 764 6922 59.0

hpg 770 8981 33.7

symalg 851 8973 34.5

reptile 969 9651 41.5

fulsom 1117 13701 43.6

ebnf2ps 1380 27426 56.8

cacheprof 1723 126898 30.7

fluid 1796 23628 71.3

parser 2442 20320 12.5

slc 2887 51074 83.9

rx 4324 48742 221.5

veritas 5452 69360 140.4

anna 5802 55850 135.6

coresa 11430 346712 336.4

ssc 13519 159845 316.3

gf 14252 192940 497.8

ghc 85033 931588 4024.54

Figure 4.2: Constraint generation times

41

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

Core LOC

Ti
m

e
(s

)

Figure 4.3: Constraint generation time versus lines of Core code

10
2

10
3

10
4

10
5

10
6

10
0

10
2

10
4

10
6

10
8

10
10

Core LOC

C
on

st
ra

in
t A

S
T−

no
de

s

Figure 4.4: Constraint AST-nodes versus lines of Core code

42

4.4.2 Constraint solver

The constraint solver, whose solving algorithm is described in the unpublished paper [GSG03],
is implemented in O’Caml1.

Some work has been done on optimising the implementation but it should also be regarded
as a prototype. An example of this is that up to 60% of the running time is consumed by the
O’Caml garbage collector. With a tailor made memory management system this is believed
to be improved.

The solving times are presented in Figure 4.5. The columns contain the number of lines of
Haskell code (excluding standard libraries), the size of the generated constraints (measured
as the number of abstract syntax nodes, including standard libraries), the running time and
the amount of heap (as reported by the O’Caml memory manager) used by the constraint
solver. In Figure 4.6 running time versus constraint size is plotted. The diagram shows that
the constraint solver scales up for all but one program which is veritas. This is however not
the whole truth since when solving the constraints for GHC the solver runs out of memory.
Therefore GHC is not present in the diagrams showing solving times. For veritas the memory
is sufficient but the running time is surprisingly long.

In Figure 4.7 running time versus lines of Haskell code is plotted. In Figure 4.8 running
time versus lines of Core code is plotted.

We believe that the reason for why the constraint solver does not scale up for GHC
and veritas is that they both contain large mutually recursive data types with contravariant
recursion. A large data type leads to a high number of annotation variables and contravariant
recursions leads to all annotation variables being bivariant. These two things together lead
to a large amount of spurious constraints which makes the constraint solver to locally behave
cubic.

1The O’Caml language: www.ocaml.org

43

Program Haskell LOC AST-nodes Time (s) Heap size (MB)

compress 549 222132 2.1 16

rsa 48 224999 1.9 16

maillist 137 242056 1.9 16

mkhprog 182 244938 2.1 16

compress2 147 272485 2.3 32

grep 104 293070 2.7 32

lift 426 330438 2.7 32

prolog 322 389839 3.0 32

fem 764 602542 4.8 32

parser 2442 670852 6.5 48

infer 561 779590 6.3 32

reptile 969 788824 5.9 32

gg 635 807724 6.6 48

pic 298 874717 6.9 32

gamteb 510 894157 6.8 48

fulsom 1117 917626 7.0 48

linear 176 918605 6.9 48

hidden 456 966645 7.2 48

bspt 708 984486 6.9 48

symalg 851 1070726 8.7 48

hpg 770 1097682 9.0 64

scs 445 1164117 10.1 64

cacheprof 1723 1246538 9.1 48

fluid 1796 1395094 10.9 64

ebnf2ps 1380 1512910 14.2 80

rx 4324 1997612 19.5 96

anna 5802 2565320 25.7 112

slc 2887 3025310 43.6 128

veritas 5452 5237168 2043.2 1120

ssc 13519 6658844 102.8 208

coresa 11430 11599811 148.2 288

gf 14252 20800100 269.9 928

ghc 85033 150694593 - -

Figure 4.5: Solving times

44

10
5

10
6

10
7

10
8

10
0

10
1

10
2

10
3

10
4

Constraint AST−nodes

Ti
m

e
(s

)

Figure 4.6: Solving time versus constraint size

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

Haskell LOC

Ti
m

e
(s

)

Figure 4.7: Solving time versus lines of Haskell code

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

Core LOC

Ti
m

e
(s

)

Figure 4.8: Solving time versus lines of Core code

45

46

Chapter 5

Related Work

The work presented in this thesis has been to design and implement a usage analysis which
should be used to evaluate a constraint solving algorithm. Therefore most of the discussion
of related work is focused on usage analysis.

5.1 Usage analysis

There is much work done on analyses which aims at avoiding updates [LGH+92, Mar93,
TWM95, Gus98, WPJ99, WPJ00, GS01a, Wan02]. The usage analysis presented in this thesis
builds upon the analysis of Gustavsson and Svenningsson [GS01a]. Their analysis has usage
polymorphism and subtyping but lacks user defined data types. The main contribution of this
thesis is that user defined data types are added and that the analysis has been implemented
and tested on real world programs.

Previous analyses have been presented which did have subtyping but not usage polymor-
phism [Gus98, WPJ99]. Analyses without polymorphism are computationally cheap but does
not give very precise results. This is shown by the work of Wansbrough and Peyton Jones,
when their analysis presented in [WPJ99] was implemented they found out that the analysis
was ”almost useless in practice” [WPJ00].

Following this the analysis presented in [Gus98] was modified and bounded polymorphism
was added yielding the analysis presented in [GS01a]. Wansbrough and Peyton Jones did
also modify their analysis but added what they call simple polymorphism instead of bounded
polymorphism. Simple polymorphism is cheaper than bounded polymorphism because it
approximates constraints. Whenever two quantified variables are constrained to each other
they are unified and the constraint is removed. This removes the problem with copying
constraints since there will be no constraints on quantified annotation variables, but it also
reduces the precision of the analysis. Their analysis with simple polymorphism has been
implemented and were shown to scale up computationally to large programs but did not give
any dramatic results when used to avoid unnecessary updates. The analysis presented in this
thesis is more precise since it do not unify constraints.

5.2 The constraint copying problem

In order to avoid an explosion of generated constraints, the usage analysis presented in this
thesis makes use of constraint abstractions which are introduced by Gustavsson and Sven-

47

ningsson [GS01b]. Work by Rehof and Fähndrich does also address this problem. In [Reh01]
they present a flow analysis with polymorphic subtyping which uses instantiation constraints.
Instantiation constraints are used to cope with the problem of copying constraints when
instantiating polymorphic constraints. Although instantiation constraints and constraint ab-
stractions look rather different they solve the same problem.

48

Chapter 6

Conclusion and Future Work

We have implemented a polymorphic usage analysis with subtyping and used it to study the
scalability of a constraint solving algorithm. The solving algorithm is worst case cubic time
but for constraints with some restrictions it is believed to be much cheaper in practice.

The measurements presented in this thesis show that the constraint solver scales up com-
putationally to all but two tested programs. We believe that the problem with the two
programs has to do with large mutually recursive data types with contravariant recursion
which leads to a large amount of spurious constraints, leading to the constraint solver be-
having locally cubic. We hope that a modification of how the usage analysis annotates type
definitions will improve this situation. The modification is however not yet implemented and
is left as future work.

We find the results of the measurements of the constraint solver promising but not con-
clusive. The fact that the constraint solver scaled up for all but two tested programs may
indicate that subtyping in combination with full-blown polymorphism is not that expensive
as earlier commonly believed.

As future work remains:

• Look at different strategies of annotating data types.

• Further investigate why the constraint solver does not scale up for veritas and GHC.

• Measuring how the usage analysis scales up in precision.

• Measuring how the constraint solver works for other analyses such as flow analysis.

49

50

Bibliography

[Gir72] J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures de

l’arithmétique d’ordre supérieur. Thèse de Doctorat d’État, Université Paris VII,
1972.

[GS01a] Jörgen Gustavsson and Josef Svenningsson. A Usage Analysis with Bounded Usage
Polymorphism and Subtyping. Lecture Notes in Computer Science, 2011:140–??,
2001.

[GS01b] Jörgen Gustavsson and Josef Svenningsson. Constraint Abstractions. Lecture

Notes in Computer Science, 2053:63–??, 2001.

[GSG03] Jörgen Gustavsson, Josef Svenningsson, and Tobias Gedell. A Constraint Solving
Algorithm with Applications to Type Based Program Analyses with Subtyping
and Polymorphism. Unpublished, 2003.

[Gus98] Jörgen Gustavsson. A Type Based Sharing Analysis for Update Avoidance and
Optimisation. In Proc. of ICFP’98, pages 39–50, Baltimore, Maryland, September
1998.

[Gus99] Jörgen Gustavsson. A Type Based Sharing Analysis for Update Avoidance and
Optimisation. Licentiate thesis, 1999.

[Jon92] Simon Peyton Jones. Implementing Lazy Functional Languages on Stock Hard-
ware: The Spineless Tagless G-Machine. Journal of Functional Programming,
2(2):127–202, 1992.

[LGH+92] J. Launchbury, A. Gill, J. Hughes, S. Marlow, S. Peyton Jones, and P. Wadler.
Avoiding unnecessary updates. In J. Launchbury and P. Sansom, editors, Func-

tional Programming, Glasgow 1992. Springer-Verlag, 1992.

[Mar93] Simon Marlow. Update Avoidance Analysis by Abstract Interpretation. In Pro-

ceedings of the 1993 Glasgow Workshop on Functional Programming, Workshops
in Computing, Ayr, Scotland, 1993. Springer-Verlag.

[Par93] W. Partain. The nofib Benchmark Suite of Haskell Programs, 1993.

[PJPS96] Simon Peyton Jones, W. Partain, and A. Santos. Let-floating: Moving Bindings to
Give Faster Programs. In International Conference on Functional Programming,
pages 1–12, 1996.

51

[Reh01] Rehof and Fähndrich. Type-Based Flow Analysis: From Polymorphic Subtyping
to CFL-Reachability. In POPL: 28th ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages, 2001.

[Sve00] Josef Svenningsson. An Efficient Algorithm for a Sharing Analysis with Polymor-
phism and Subtyping. Master’s thesis, 2000.

[Tol01] Andrew Tolmach. An External Representation for the GHC Core Language, 2001.

[TWM95] David N. Turner, Philip Wadler, and Christian Mossin. Once upon a type. In 7’th

International Conference on Functional Programming and Computer Architecture,
pages 1–11, La Jolla, California, June 1995. ACM Press.

[Wan02] Keith Wansbrough. Simple Polymorphic Usage Analysis. PhD thesis, Computer
Laboratory, University of Cambridge, England, 28 March 2002. Revised July 2003.

[WPJ99] Keith Wansbrough and Simon Peyton Jones. Once upon a polymorphic type. In
ACM, editor, POPL ’99. Proceedings of the 26th ACM SIGPLAN-SIGACT on

Principles of programming languages, January 20–22, 1999, San Antonio, TX,
ACM SIGPLAN Notices, pages 15–28, New York, NY, USA, 1999. ACM Press.

[WPJ00] Keith Wansbrough and Simon Peyton Jones. Simple Usage Polymorphism, 2000.

52

