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Abstract

This thesis is concerned with analysis of programs. Analysis of programs can
be divided into two camps: static analysis and formal verification.

Static program analyses compute a result and terminate for all programs.
Since virtually all interesting semantic properties are undecidable, a static pro-
gram analysis needs to be approximative to ensure termination. When designing
such an analysis it can be hard to know which features that have the largest
impact on the precision and should be added. This is the subject of the first
paper in this thesis in which we investigate the impact a number of features
have on the precision of usage analysis.

Formal verification often refers to deductive verification based on logic and
theorem proving. When verifying a property, the program and the property
are both translated into logical formulas and a theorem prover is used to show
that the property holds for the program. Formal verification is a much more
precise and general purpose technique than static analysis. This does, however,
not come for free. It is extremely hard to find good heuristics for guiding the
automatic construction of proofs. Therefore, user interaction is often required
which makes the verification very time consuming and expensive.

Static program analysis is limited by its approximative nature and program
verification by its high cost. It is, therefore, interesting to try to combine the
strengths of the two techniques. This can be done in both directions: by letting a
static program analysis use a theorem prover designed for program verification or
letting a program verifier use a static program analysis. The latter combination
is the subject of the second and third paper in this thesis.

We make the following contributions:

• We investigate the impact of a number of features on the precision of usage
analysis.

• We show how a static program analysis can be embedded into a theorem
prover.

• We show how interactive techniques for handling loops can sometimes be
made automatic by using a dependence analysis.
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Chapter 1

Introduction

This thesis is concerned with analysis of programs. Analysis of programs can be
divided into two camps: static analysis and formal verification. In the following
sections we introduce both these techniques and discuss why it is interesting to
try to combine them.

1 Static Program Analysis

The aim of static program analysis is to statically determine various properties
of programs. In this thesis, when talking about static program analysis we
refer to the class of automatic and inexpensive program analyses that are often
used to guide program optimizations or establish rather simple properties about
programs. Two examples of static program analyses in this class are:

• Type checking - Determines whether a program is correct with respect
to a given type system.

• Null pointer analysis - Analyzes each pointer variable in a program to
determine whether it can, at runtime, contain a null pointer.

An important feature of these two program analyses, and program analyses
in general, is that they compute a result and terminate for all programs. Unfor-
tunately, virtually all interesting semantic properties are undecidable. That a
property is undecidable can be proven by showing that computing the property
would at the same time solve the halting problem. For the null pointer analysis,
this can be shown by the following example where p is an arbitrary program
and x a variable:

x = new Object();

p
x = NULL;

(1)

1



2 Introduction

If the null pointer analysis establishes that x will be assigned a null pointer,
we know that p terminates and have, thus, solved the halting problem.1

It is clear that a static program analysis must be approximative in order to
handle the termination requirement. For the example above, the null pointer
analysis will say that x might contain a null pointer. When computing such an
approximative result it is important that it is done in the right way.

Consider a static program analysis checking whether a security property
is fulfilled by a particular program. Let us also assume that if the analysis
finds that the program fulfills the security property, we will regard the program
as being safe. In this case it is important that when the program analysis
approximates, it does not mistake a program not fulfilling the security property
for one that does. If it did, we could no longer trust the program analysis. On
the other hand, it is acceptable that the program analysis mistakes a secure
program for an insecure program. As a consequence, when the analysis rejects
a program because it believes it is insecure, we do not know if it is because
the program is inherently insecure or if it is due to the analysis approximating
the result. Although undesired, this will not have the drastic consequences the
opposite behavior would have.

When an analysis behaves in this desired way it is said to be sound. Design-
ing a good approximating program analysis is a non-trivial task that requires a
lot of thought. An approximation good for one kind of analysis might be terrible
for another.

Another important feature of the class of static program analyses that we
consider is that they are computationally cheap, i.e. that they are not too re-
source or time consuming. Often static program analyses have upper bounds of
their complexity that can be formally proven. Ideally, a static program anal-
ysis should be close to linear at least in practice. This is very different from
deductive program verification, that we will return to later, for which usually
no termination guarantee exists.

When designing an analysis it can be hard to know which features have the
largest impact on the precision and should be added to the analysis. There is a
number of features that can be incorporated to make it more precise, but also
at the same time more computationally expensive. Simply adding all features
will probably render the analysis too expensive. This is the subject of the first
paper in this thesis in which we investigate the impact a number of features
have on the precision of a particular static analysis.

Because of the approximative nature of program analyses they are not very
well suited to verify or establish complex properties. Most of the time they
are tailor-made for computing rather simple properties in situations where the
computational cost is of more importance than the precision of the computed
results.

1Assuming that p itself does not refer to x.
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1.1 Usage analysis

The particular static program analysis studied in the first paper in this thesis
is usage analysis [LGH+92, Mar93, TWM95, Gus98, WPJ99, WPJ00, GS00,
Wan02]. Usage analysis works on programs written in lazy functional languages
and is best explained by showing how lazy evaluation works.

The main feature of lazy evaluation is that expressions should not be eval-
uated before they are needed and that an expression should only be evaluated
once, i.e. its value should be shared by all its successive uses. Consider the
following example.

let x = 1 + 2

y = 3 + 4

in x + x

(2)

When evaluating the expression, the computations for x and y will be stored
unevaluated in the program memory, called the heap. We will refer to expres-
sions stored in the heap as closures. When evaluating the expression x + x,
we fetch the closure for x from the heap and evaluate it. When the expression
has been evaluated we make sure that we update its closure with the result.
This way we make sure that when x is used the second time, we fetch the al-
ready computed result from the heap and do not recompute the expression. It is
important to notice that since y was never needed its value was never evaluated.

Lazy evaluation allows the programmer to focus on what should be computed
instead of in which order the computation should be done. It also allows for the
use of infinite structures such as infinite lists which cannot be used in languages
with strict evaluation semantics.

One inefficiency of lazy evaluation is that the updating of evaluated closures
is not always needed. If we change the expression in (2) to x + y instead of
x + x, the unnecessary overhead is illustrated. Now both x and y will only be
used once which means that the time spent updating their closures is wasted.
How serious this is depends, of course, on how often expressions are only used
once in functional programs. Measurements by Marlow [Mar93] have shown
that for a particular Haskell implementation as many as 70% of all updates are
unnecessary and that these updates stand for up to 20% of the total running
time of a program.

If we knew which expressions are only used once during the execution of a
program we could use this information to avoid updating their closures. This
would make the programs run faster. Besides avoiding updates the information
can also be used to enable a number of optimizing program transformations
such as inlining, let floating, and full laziness [PJPS96]. The output of the
usage analysis is an annotated version of the analyzed program. Each point in
the annotated program that allocates closures is annotated with 1 or ω. If a
point is annotated with 1, it means that all closures created at that point is
only used once.



4 Introduction

The usage analysis in the first paper in this thesis is defined as a type based
program analysis. A type based program analysis can be seen as an extension
to the underlying type system where the typing rules are extended to not only
infer regular types but also usage information.

2 Program Verification

When talking about program verification in this thesis we mean deductive veri-
fication based on logic and theorem proving. In a program verifier of this type,
the semantics of the target language is expressed in a program logic. Any prop-
erty that can be expressed using the logic can then be checked for a particular
program. When verifying a property, the program and the property are both
translated into logical formulas and a theorem prover is used to show that the
property holds for the program.

This is a much more precise and general purpose technique than the previ-
ously introduced static program analysis. It is more precise because we encode
the exact semantics of the target language and use it to reason about programs
in a precise way. It is general purpose since it can handle all properties that
can be expressed in its logic. This does, however, not come for free. Having an
expressive logic means that it is impossible to find a complete calculus for it. It
will be theoretically impossible to establish correctness of all valid properties. It
also becomes extremely hard to find good heuristics for guiding the automatic
construction of proofs. Therefore, user interaction is often required which makes
the verification very time consuming and expensive. It also forces the user to
have a good knowledge of how the underlying program logic and calculus works.

Deductive program verification often does not have any termination guar-
antee. For the example in (1), a program verifier would in general be unable to
prove or refute the property and, thus, never terminate.

Since a program verifier is made to be general it will not be optimized for
any special class of properties. There will, therefore, be a rather large overhead
when reasoning using the program logic instead of using a tailor-made static
program analysis.

The main advantage of using program verification is that it can handle much
more complex properties. Often, deductive program verification is used to verify
that programs meet their functional specifications.

2.1 The KeY tool

The program verifier used in this thesis is the KeY tool [ABB+05], which fea-
tures an interactive theorem prover for formal verification of sequential Java

programs. In KeY the program to be verified and the property are modeled in
a dynamic logic called Java DL [Bec01]. The dynamic logic is a modal logic in
which Java programs can occur as parts of formulas using modality operators.

The formula 〈p〉φ expresses that the program p terminates, without throwing
an exception, in a state in which φ holds. A formula φ → 〈p〉ψ is valid if for
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every state S, satisfying precondition φ, a run of the program p starting in S
terminates normally, and in the terminating state the postcondition ψ holds.

Deduction in the Java DL sequent calculus is based on symbolic program
execution and simple program transformations. The rules of the calculus, called
taclets, are implemented in a domain specific tactic language. A taclet typically
consists of a guard pattern that is matched against the sequent under consider-
ation and an action which is performed if the taclet is applied.

3 Combining Program Analysis and Verification

Static program analysis and deductive program verification are similar. Despite
being two extremes on an abstract axis of precision, they are both working with
exactly the same thing: properties of programs. There are, however, differences.
One of these is that they target different classes of properties that have different
requirements. Static program analysis is limited by its approximative nature
and program verification by its high cost. It is, therefore, interesting to try
to combine the strengths of the two techniques. This can be done in both
directions: by letting a static program analysis use a theorem prover designed
for program verification or by letting a program verifier use a static program
analysis.

An example of the former could be a security analysis which needs to prove
that for some loops certain invariants hold. This is something which is difficult
for an automatic static program analysis to do. Normally, one would let the
analysis approximate the results but it could render the analysis too imprecise
to be useful. In cases like these it is possible that we can benefit from letting
the analysis use a theorem prover to reason about the loop. We would loose the
termination guarantee but it might in practice be worth it to get a more precise
result.

In the latter case it also appears like there is much to be gained. Since we
are dealing with a technique that requires interaction we do not loose anything
by adding a cheap and automatic static program analysis. An example of this
could be a program verifier having a set of general rules for handling almost any
kind of properties but where each rule is rather costly to use. When verifying
a program, the verifier will be forced to use the costly rules even for properties
that are simple enough to be handled by a computationally cheap static program
analysis. Consider the following method call: o.m();. Upon reaching the call to
o.m() a program verifier probably needs to ensure either that o never contains a
null pointer or handle the case when a null pointer exception is thrown. Using
the rules of the verifier to prove that the variable never contains a null pointer
can be very costly. Handling the case when an exception is thrown might also be
very costly. Using a null pointer analysis to quickly decide whether the variable
can contain a null pointer would enable us to sometimes avoid the exception
case when it cannot be reached. It does not matter that the static analysis is
imprecise, the default behavior of the program verifier corresponds to using a
static analysis that always answers that the variable can contain a null pointer.
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As long as the time spent running the null pointer analysis is less than the time
saved by not having to handle unnecessary cases, we clearly benefit from doing
this.

Combining static program analysis and program verification can be done in
at least the following two ways:

• The static program analysis and the program verifier are kept separate.
First the analysis is run on the program under consideration and the
computed results are given along with the program to the verifier. Here,
there is no interaction between the analysis and verifier which limits the
approach. It is, however, the easiest way of combining them.

• The program analysis and the program verifier can be made to interact
with each other. Instead of only running the analysis once before the
verifier starts, the analysis can be run whenever the verifier needs it. The
verifier can then pass the analysis information about the program which
could help the analysis to compute a more precise result. In this way
the static analysis and the verifier are interleaved and can be run in an
incremental fashion.

Combining static program analysis and program verification is the subject
of both the second and third paper in this thesis. In the second paper we show
how a program analysis can be embedded into the KeY tool. In the third paper
we show how interactive techniques for handling loops can sometimes be made
automatic by using a dependence analysis.

4 Overview

This thesis consists of three papers, each discussing a topic related to static
program analysis or the combination of static program analysis and program
verification.

4.1 Paper I: Polymorphism, Subtyping, Whole Program

Analysis and Accurate Data Types in Usage Analysis

In this paper we study the impact of various features on a full scale implemen-
tation of a usage analysis for Haskell. The questions we investigate are: Should
the analysis be monomorphic or have some degree of polymorphism? What
about subtyping? How should the analysis deal with user defined algebraic
data types? Should it be a whole program analysis?

When designing a usage analysis, a choice has to be made for each of these
questions. Several researchers have speculated that these features are important
but there has been a lack of empirical evidence. Since some of the features can
be rather costly, it is important for designers of program analyses to know how
much higher precision it is reasonable to expect by adding them.

In order to evaluate the above features, we have implemented a range of
usage analyses with
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• different degrees of polymorphism,

• with and without subtyping,

• different treatments of data types, and

• as whole program analyses and as modular analyses.

Our measurements show that all features increase the precision. It is, how-
ever, not necessary to have them all to obtain an acceptable precision.

4.2 Paper II: Embedding Static Analysis into Tableaux

and Sequent based Frameworks

In this paper we present a method for embedding static analysis into tableaux
and sequent based frameworks. In these frameworks, the information flows from
the root node to the leaf nodes. We show that the existence of free variables in
such frameworks introduces a bi-directional flow, which can be used to collect
and synthesize arbitrary information.

We use the free variables mechanism and the tactic language in the KeY tool
to implement a reaching definitions analysis. The chosen analysis is a common
and well-known analysis that shows the potential of the method.

The achieved results are promising and open up for new areas of application
of tableaux and sequent based theorem provers.

4.3 Paper III: Automating Verification of Loops by

Parallelization

In this paper we show how one can replace interactive proof techniques such
as induction, with automated first-order reasoning in order to deal with paral-
lelizable loops. A loop can be parallelized whenever it avoids dependence of the
loop iterations from each other.

Loops are a major bottleneck in formal software verification, because they
generally require user interaction: typically, induction hypotheses or invariants
must be found or modified by hand. This involves expert knowledge of the
underlying calculus and proof engine.

We develop a dependence analysis that ensures parallelizability. It guaran-
tees soundness of a proof rule that transforms a loop into a universally quanti-
fied update of the state change information represented by the loop body. This
makes it possible to use automatic first order reasoning techniques to deal with
loops. The method has been implemented in the KeY tool. We evaluated it
with representative case studies from the Java Card domain.

5 Contributions

The main contributions of the work presented in this thesis are:
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• Paper I

– We perform a systematic evaluation of the impact of various fea-
tures on usage analysis, giving valuable input to designers of usage
analyses.

– We have implemented and used a measuring technique that gives
more relevant results than previous case studies.

• Paper II

– We show how synthesis can be performed in a tableau or sequent
style prover, which opens up for new areas of application.

– We show how the rules of a program analysis can be embedded into
a program logic and coexist with the original rules by using a tactic
language.

– We give a proof-of-concept of our method. We do this by giving the
full embedding of a program analysis in the KeY tool.

• Paper III

– We show how one can replace interactive proof techniques such as
induction, with automated first-order reasoning in order to deal with
parallelizable loops.

– We show the feasibility of our technique by implementing it in the
KeY tool.

– We show the relevance of our technique by evaluating it with repre-
sentative case studies from the Java Card domain.
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Polymorphism, Subtyping, Whole Program

Analysis and Accurate Data Types in Usage

Analysis

Tobias Gedell Jörgen Gustavsson Josef Svenningsson

Abstract

There are a number of choices to be made in the design of a type based
usage analysis. Some of these are: Should the analysis be monomorphic or
have some degree of polymorphism? What about subtyping? How should
the analysis deal with user defined algebraic data types? Should it be a
whole program analysis?

Several researchers have speculated that these features are important
but there has been a lack of empirical evidence. In this paper we present
a systematic evaluation of each of these features in the context of a full
scale implementation of a usage analysis for Haskell.

Our measurements show that all features increase the precision. It is,
however, not necessary to have them all to obtain an acceptable precision.

1 Introduction

In this article we study the impact of polymorphism, subtyping, whole program
analysis and accurate data types on type based usage analysis. Usage analysis
is an analysis for lazy functional languages that aims to predict whether an
argument of a function is used at most once. The information can be used to
reduce some of the costly overhead associated with call-by-need and perform
various optimizing program transformations.

Polymorphism Polymorphism is the primary mechanism for making a type
based analysis context sensitive.

Previous work by Peyton Jones and Wansbrough has indicated that polymor-
phism is important for usage analyses. Convinced that polymorphism could be
dispensed with they made a full scale implementation of a completely monomor-
phic usage analysis. However, it turned out that it was ”almost useless in
practice” [WPJ99]. They drew the conclusion that the reason was the lack of
polymorphism. In the end they implemented an improved analysis with a sim-
ple form of polymorphism that also incorporated other improvements [Wan02].
The resulting analysis gave a reasonable precision but there is no evidence that
polymorphism was the crucial feature.

11
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In contrast to these indications, several studies on points-to analysis for
C have shown that monomorphic analyses [FFA00b, HT01, FRD00, Das00,
DLFR01] give adequate precision for the purpose of an optimizing compiler
[DLFR01]. Moreover, extensions of these analyses seem to have only a moder-
ate effect. For example, Foster et al [FFA00b] showed that adding polymorphism
to Andersen’s [And94] inclusion based points-to analysis for C only gave a mod-
erate increase in precision and Das et al [DLFR01] came to the same conclusion
when they added a limited degree of polymorphism to the analysis in [Das00].

A possible explanation for the indicated discrepancy is that functional pro-
grammers more often write small reusable functions because of the excellent
features for abstraction. One of the goals of this work has been to confirm or
refute this discrepancy.

Subtyping Another important feature in type based analyses is subtyping.
It provides a mechanism for approximating a type by a less informative super
type. This gives a form of context sensitivity since a type may have different
super types at different call sites. It also provides a mechanism for combining
two types, such as the types of the branches of an if expression, by a common
super type. Thus, subtyping and polymorphism interfere with each other.

This raises a number of questions. Does it suffice with either polymorphism
or subtyping? How much is gained by having the combination?

Whole program analysis Another issue that also concerns context sensi-
tivity is whole program analysis versus modular program analysis. A modular
analysis which considers each module in isolation must make a worst case as-
sumption about the context in which it appears.

This will clearly degrade the precision of the analysis. But how much? Is
whole program analysis a crucial feature? And how does it interact with the
choice of monomorphism versus polymorphism?

Data types Another important design choice in a type based analysis is how
to deal with user defined data types. The intuitive and accurate approach may
require that the number of annotations on a type is exponential in the size of the
type definitions of the analyzed program. The common solution to the problem
is to limit the number of annotations on a type in some way, which leads to
spurious loss of precision. The question is how big the loss is in practice.

Contributions In order to evaluate the above features, we have implemented
a range of usage analyses with

• different degrees of polymorphism,

• with and without subtyping,

• different treatments of data types, and

• as whole program analyses and as modular analyses.
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All analyses have been implemented in the GHC compiler and have been
measured with GHC’s optimizing program transformations both enabled and
disabled.

Our systematic evaluation shows that each of these features has a signifi-
cant impact on the precision of the analysis. Especially, it is clear that some
kind of context sensitivity is needed through polymorphism or subtyping. Our
results also show that the different features are intertwined and interfere with
each other. The combined effect of polymorphism and subtyping is for example
not very dramatic although each one of them has a large effect on the accu-
racy. Another example is that whole program analysis is more important for
monomorphic analysis than polymorphic analysis.

Outline The paper is organized by considering each dimension in turn. We
evaluate different degrees of polymorphism in Section 3, subtyping in Section 4,
data types in Section 5 and whole program analysis in Section 6.

2 Usage Analysis

Implementations of lazy functional languages maintain sharing of evaluation by
updating. For example, the evaluation of

(λx.x + x) (1 + 2)

proceeds as follows. First, a closure for 1+2 is built in the heap and a reference
to the closure is passed to the abstraction. Second, to evaluate x+x the value of
x is required. Thus, the closure is fetched from the heap and evaluated. Third,
the closure is updated (i.e., overwritten) with the result so that when the value
of x is required again, the expression needs not be recomputed.

The same mechanism is used to implement lazy data structures such as
potentially infinite lists.

The sharing of evaluation is crucial for the efficiency of lazy languages. How-
ever, it also carries a substantial overhead which is often not needed. For ex-
ample, if we evaluate

(λx.x + 1) (1 + 2)

then the update of the closure is unnecessary because the argument is only used
once.

The aim of usage analysis is to detect such cases. The output of the analysis
is an annotated program. Each point in the program that allocates a closure
in the heap is annotated with 1 if the closure that is created at that point is
always used at most once. It is annotated with ω if the closure is possibly used
more than once or if the analysis cannot ensure that the closure is used at most
once.

The annotations allow a compiler to generate code where the closures are
not updated and thus effectively turning call-by-need into call-by-name. Usage
analysis also enables a number of program transformations [PJPS96, JM99].
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Usage analysis has been studied by a number of researchers
[LGH+92, Mar93, TWM95, Fax95, Gus98, WPJ99, WPJ00, GS00, Wan02].

2.1 Measuring the Effectiveness

We measured the effectiveness of the analyses by running them on the programs
from the nofib suit [Par93] which is a benchmarking suit designed to evaluate
the Glasgow Haskell Compiler (GHC). We excluded the toy programs and ran
our analysis on the programs classified in the category real but had to exclude
the following three programs: HMMS did not compile with GHC on our test
system, ebnf2ps is dependent on a version of Happy that we could not get to
work with our version of GHC, and veritas because many analyses ran out of
memory when analyzing it.

Despite the name of the category, the average size of the programs is unfor-
tunately quite small.

The notion of effectiveness When measuring the effectiveness it is natural
to do so by modifying the runtime system of GHC. The runtime system is mod-
ified to collect the data needed to compute the effectiveness during a program’s
execution.

The easiest way is to count how many created closures that are only used
once and how many of those closures that were detected by the analysis. This
can be implemented by adding three counters to the runtime system: one that
gets incremented as soon as an updatable closure is created, one that gets incre-
mented each time a closure is used a second time, and one that gets incremented
as soon as a closure annotated with 1 is created. With these counters one can
compute an effectiveness of an analysis:

closures annotated with 1

created closures − closures used twice

This is the measure used by Wansbrough [Wan02].
A drawback of this approach is that it does not take into account that each

program point can only have one annotation – if any of the closures allocated at
a program point is used more than once, that program point has to be annotated
with ω for the analysis to be sound. Thus, if there is such a program point (and
there typically are) then even a perfect analysis would not get a 100 percent
effectiveness.

What we would like to do is to compute the effectiveness by measuring the
proportion of program points that are correctly annotated instead of the propor-
tion of updates that are avoided. We, therefore, modified the run time system to
compute the best possible annotations which are consistent with the observed
run time behavior. I.e., if all the closures allocated at a specific program point is
used at most once during the execution, that program point could be annotated
with 1 otherwise ω. We did this by, for each closure, keeping track of at which
program point it was created. When a closure is used a second time we add
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its program point to the set of program points that need to be annotated with
ω. We were careful to exclude code that was not executed in the executions
such as parts of imported libraries which were not used. It is important to note
that this way of measuring is still based on running the program on a particular
input and a perfect analysis may still get an effectiveness which is less than 100
percent.

These two different ways of measuring differ also at another crucial point.
The former measurement depends very much on how many times each program
point that allocates closures is executed. If a single program point allocates a
majority of all closures, the computed effectiveness will depend very much on
whether that single program point was correctly annotated by the analysis. In
contrast, the effectiveness computed with the latter measurement will hardly be
affected by one conservative annotation.

We think that the latter notion of effectiveness is more informative and have,
therefore, used it for all our measurements.

Optimizing program transformations Our implementation is based on
GHC which is a state of the art Haskell implementation. GHC parses the
programs and translates them into the intermediate language Core, which is
essentially System F [PJPS96]. When GHC is run with optimizations turned on,
it performs aggressive program transformation on Core before it is translated
further. We inserted our analyses after GHC’s program transformations just
before the translation to lower level representations.

We ran the analysis with GHC’s program transforming optimizations both
enabled and disabled. The latter gives us a measure of the effectiveness of
an analysis on code prior to program transformations. This is relevant because
usage information can be used to guide the program transformations themselves.

3 Polymorphism

We start by evaluating usage polymorphism. Too see why it can be a useful
feature, consider the function that adds up three integers.1

plus3 x y z = x+ y + z

Which usage type should we give to this function? Since the function uses all
its arguments just once, it seems reasonable to give it the following type.

Int1 → Int1 → Int1 → Intω

The annotations on the type express that all three arguments are used just once
by the function and that the result may be used several times. However, this
type is not correct. The problem is that the function may be partially applied:

map (plus3 (1 + 2) (3 + 4)) xs

1This example is due to Wansbrough and Peyton Jones [WPJ00]
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If xs has at least two elements then plus3 (1+2) (3+4) is used more than once.
As a consequence, so is also (1 + 2) and (3 + 4).

To express that functions may be used several times we need to annotate
also function arrows. A possible type for plus3 could be:

Intω →ω Intω →ω Int1 →ω Intω

The function arrows are annotated with ω which indicates that plus3 and its
partial applications may be used several times. The price we pay is that the
first and the second argument are given the type Intω. This type is sound but
it is clearly not a good one for call sites where plus3 is not partially applied.
What is needed is a mechanism for separating call sites with different usage.

The solution to the problem is to give the function a usage polymorphic
type:

∀ u0 u1 u2 u3 | u2 ≤ u0, u3 ≤ u0, u3 ≤ u1.Intu0 →ω Intu1 →u2 Int1 →u3 Intω

The type is annotated with usage variables and the type schema contains a set of
constraints which restrict how the annotations can be instantiated. A constraint
u ≤ u′ simply specifies that the values instantiated for u must be smaller than
or equal to the values instantiated for u′ where we have the ordering that 1 < ω.
This form of polymorphism is usually referred to as constrained polymorphism
or bounded polymorphism.

In our example, u2 ≤ u0 enforces that if a partial application of plus3 to
one argument is used more than once then that first argument is also used more
than once. Similarly, u3 ≤ u0 and u3 ≤ u1 makes sure that if we partially apply
plus3 to two arguments and use it more than once then both these arguments
are used more than once.

3.1 Degrees of Polymorphism

There are many different forms of parametric polymorphism. In this paper
we consider three different systems where usage generalization takes place at
let-bindings.

• An analysis with monomorphic recursion in the style of ML. Intuitively,
this gives the effect of a monomorphic analysis where all non-recursive
calls have been unwound.

• An analysis with polymorphic recursion [Myc84, Hen93, DHM95]. Intu-
itively, this gives the effect of the previous analysis where recursion has
been (infinitely) unwound.

• An analysis where the form of type schemas are restricted so that gen-
eralized usage variables may not be constrained. A consequence of the
restriction is that an implementation need not instantiate (i.e., copy) a
potentially large constraint set whenever the type is instantiated. Wans-
brough and Peyton Jones [WPJ00] suggested this in the context of usage
analysis and called it simple usage polymorphism.
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Figure 1: Measurements of polymorphism

With simple usage polymorphism it is not possible to give plus3 the type

∀u0u1u2u3 |u2 ≤ u0, u3 ≤ u0, u3 ≤ u1.Intu0 →ω Intu1 →u2 Int1 →u3 Intω

because the generalized variables u0, u1, u2, u3 are all constrained. Instead
we can give it the type

∀ u.Intu →ω Intu →u Int1 →u Intω

where we have unified the generalized variables into one. This type is
clearly worse but it gives a degree of context sensitivity. An alternative is
to give it a monomorphic type. For example

Intω →ω Int1 →ω Int1 →1 Intω.

These types are incomparable and an implementation needs to make a
heuristic choice. We use the heuristic proposed by Wansbrough [Wan02]
to generalize the types of all exported functions and give local functions
monomorphic types.

The analyses include usage subtyping; use an aggressive treatment of algebraic
data types and are compatible with separate compilation (i.e., we analyze the
modules of the program one by one in the same order as GHC). We discuss and
evaluate all these features later on.

3.2 Evaluation

The results are shown in Figure 1, which shows the average effectiveness of each
analysis, and Section A.1, which shows the effectiveness for each program.

The most striking observation is that the results are very different depending
on whether GHC’s optimizing program transformations are turned on or off.
The effectiveness is much lower with program transformations turned on. We
believe that an explanation of this is that GHC inlines many function calls.
There is no need to create closures for the arguments of these function calls
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anymore and thus many targets for the analysis disappears. The net effect is
that the proportion of difficult cases (such as closures in data structures and
calls to unknown functions) increases which reduces the effectiveness.

Another explanation is strictness analysis [Myc82]. Strictness analysis can
decide that the argument of a function is guaranteed to be used at least once
(in any terminating computation). In those cases there is no need to suspend
the evaluation of that argument. If an argument is used exactly once then it
is a target for both strictness and usage analysis. When the strictness analysis
(as part of GHC’s program transformation) is ran first it removes some easy
targets.

Another phenomena is that the benefits of polymorphism are smaller when
program transformations are turned on. This is what you would expect since
inlining naturally makes context sensitivity less important.

The results also show that the polymorphic analyses are significantly better
than the monomorphic one. Polymorphic recursion turns out to have hardly
any effect compared to monomorphic recursion. Simple polymorphism comes
half way on unoptimized code – it is significantly better than monomorphism
but significantly worse than constrained polymorphism, which shows that it can
serve as a good compromise. This is, however, not the case for optimized code.

The largest surprise to us was that the accuracy of the monomorphic analysis
is relatively good. This seems to contradict the results reported by Wansbrough
and Peyton Jones [WPJ00] who implemented and evaluated the monomorphic
analysis from [WPJ99]. They found that the analysis was almost useless in
practice and concluded that it was the lack of polymorphism that caused the
poor results. We do not have a satisfactory explanation for this discrepancy.

4 Subtyping

Consider the following code fragment.

let x =u 1 + 2 in . . .

Here u is the usage annotation associated with the closure for 1 + 2.
The analysis can take u to be 1 if and only if x is used at most once. That

is assured by giving x the type Int1. The type system then makes sure that the
program is well typed only if x is actually used at most once.

If we on the other hand take u to be ω then x has the type Intω. It is always
sound to annotate a closure with ω regardless of how many times it is used.
We, therefore, want the term to be well typed regardless of how many times x
is actually used. The solution is to let Intω be a subtype of Int1. That is, if a
term has the type Intω we may also consider it to have the type Int1.

Subtyping makes the system more precise. Consider the function f .

f x y = if x ∗ x > 100 then x else y

It seems reasonable that we should be able to give it, for example, the type

Intω →ω Int1 →ω Int1.
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Figure 2: Measurements of subtyping

This type expresses that if the result of the function is used at most once then
the second argument is used only once. The first argument is, however, used at
least twice regardless of how many times the result is used.

To derive this type we must have usage subtyping. Otherwise, the types of
the branches of the conditional would be incompatible – x has type Intω and y
has the type Int1. With subtyping we can consider x to have the type Int1.

Without subtyping x and y has to have the same type and the type of the
function must be

Intω →ω Intω →ω Intω

which puts unnecessary demands on y.
Subtyping can also give a degree of context sensitivity. Consider, for exam-

ple, the following program.

let f x = x+ 1
a = 1 + 2
b = 3 + 4

in f a+ f b+ b

Here, b is used several times and is given the type Intω. Without subtyping
nor polymorphism we would have to give a the same type and the two call sites
would pollute each other.

When subtyping is combined with polymorphism it naturally leads to con-
strained polymorphism. Note, however, that subtyping is not the only source
of inequality constraints in a usage analysis. Inequality constraints are also
used for the correct treatment of partial application (see Section 3) and data
structures. Thus, we use constrained polymorphism also in the systems without
subtyping.

4.1 Evaluation

We have evaluated two systems without subtyping – a polymorphicly recursive
and a monomorphic analysis. Both analyses use an aggressive treatment of
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data types and are compatible with separate compilation. Figure 2 shows the
average effectiveness of each analysis. Section A.2 shows the effectiveness for
each program. We have included the system with polymorphic recursion and
subtyping and the monomorphic system with subtyping from Section 3 for an
easy comparison.

The results show that the accuracy of the monomorphic system without
subtyping is poor. The precision is dramatically improved if we add subtyping
or polymorphism. Our explanation is that both polymorphism and subtyping
gives a degree of context sensitivity which is crucial.

The polymorphic system without subtyping is in principle incomparable to
the monomorphic system with subtyping. However, in practice the polymorphic
system outcompetes the monomorphic one. The difference is much smaller when
the analyses are run on optimized code which is consistent with our earlier
observation that context sensitivity becomes less important because of inlining.

The combination of subtyping and polymorphism has a moderate but sig-
nificant effect when compared to polymorphic analysis without subtyping. The
effect is relatively larger on optimized code. The explanation we can provide is
that the proportion of hard cases - which requires the combination – is larger
because the optimizer has already dealt with many simple cases.

5 Algebraic data types

An important issue is how to deal with data structures such as lists and user
defined data types. In this section we evaluate some different approaches.

Let us first consider the obvious method. The process starts with the user
defined data types which only depend on predefined types. Suppose T is such
a type.

data T ~α = C1 ~τ | . . . | Cn ~τ

The types on the right hand side are annotated with fresh usage variables. If
there are any recursive occurrences they are ignored. The type is then parame-
terized on these usage variables, ~u.

data T ~u ~α = C1 ~τ
′
1 | . . . | Cn ~τ

′
n

Finally, any recursive occurrence of T is replaced with T ~u. The process con-
tinues with the remaining types in the type dependency order and when T is
encountered it is replaced with T ~u′ where ~u′ is a vector of fresh variables. If
there are any mutually recursive data types they are annotated simultaneously.

As an example consider the following data type for binary trees:

data Tree α = Node (Tree α) (Tree α) | Leaf α

When annotated, it contains three annotation variables:

data Tree 〈k0, k1, k2〉 α = Node (Tree 〈k0, k1, k2〉 α)k0 (Tree 〈k0, k1, k2〉 α)k1

| Leaf αk2
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This approach is simple and accurate and we used it in all the analyses in
the previous sections. The net effect is equivalent to a method where all non-
recursive occurrences in a type are first unwound. As a result the number of
annotation variables can grow exponentially. An example of this is the following
data type:

data T0 〈k0〉 = C Intk0

data T1 〈k0, k1, k2, k3〉 = C ′ (T0 〈k1〉)
k0 | C ′′ (T0 〈k3〉)

k2

. . .

data Tn 〈k0, . . . , km〉 = C ′
n (Tn−1 〈. . .〉)

k0 | C ′′
n (Tn−1 〈. . .〉)

km/2

Here Tn will contain 2n usage variables.
In practice, the number of required variables sometimes grows very large.

The largest number we have encountered was a type in the Glasgow Haskell
Compiler which required over two million usage annotations. As a consequence
a single subtyping step leads to over two million inequality constraints and our
implementation simply could not deal with all those constraints. This problem
was the reason for why we had to exclude the program veritas from our study.
It is clear that an alternative is needed and we tried two different ones.

The first approach was to put a limit on the number of usage variables which
are used to annotate a type. If the limit is exceeded then we simply use each
variable several times on the right hand side of the type. We do not try to do
anything clever and when we exceed the limit we simply recycle the variables
in a round robin manner. This approach leads to ad-hoc spurious behavior of
the analysis when the limit is exceeded but maintains good accuracy for small
types. We tried this approach with a limit of 100, 10 and 1.

The second approach was to simply annotate all types on the right hand side
with only ω. The effect is that information is lost when something is inserted
into a data structure – the analysis simply assumes the worst about its usage.
Intuitively this can be thought of as a special case of the approach above where
the limit is zero.

All the analyses used for measuring the treatment of data types have subtyp-
ing and polymorphic recursion and are compatible with separate compilation.

5.1 Evaluation

The average effectiveness of each analysis is shown in Figure 3. In Section A.3
the effectiveness for each program is shown.

The results are quite different for optimized and unoptimized code. In the
case of unoptimized code there is a clear loss in precision when we limit the
number of annotation variables. The loss is quite small when the limit is 100
but quite dramatic when the limit is only 10. Going further and annotating
with only one or no variables has a smaller effect.

The situation is different for optimized code. Here there is only a small
difference when the number of variables are limited to 100 or 10. But there is a
noticeable effect when one or no variables are used.
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Figure 3: Measurements of treatments of data types

We believe that this effect stems from Haskell’s class system. When Haskell
programs are translated into Core each class context is translated to a so called
dictionary parameter. A dictionary is simply a record of the functions in an
instance of a class. Large classes leads to large records of functions which
are passed around at run time. When the number of annotations are limited,
it substantially degrades the precision for these records. Presumably, most
dictionaries require more than 10 variables but less than 100 which explains the
effect for unoptimized code.

These records are often eliminated by GHC’s program transformations which
specializes functions for each particular instance in a form of partial evaluation
[Jon94, Aug93]. Thus, in optimized code there are not so many large types
which explains why the effect of limiting the number of variables to 10 is quite
small. When the limit on the other hand is one or zero it strikes all user defined
types which has a significant effect.

6 Whole Program Analysis

So far all the analyses have been compatible with separate compilation. In this
section we consider whole program analysis.

Suppose that f is an exported library function where the closure created for
x′ is annotated with u.

f x = let x′ =u x+ 1 in λy.x′ + y

In the setting of separate compilation we have to decide which value u should
take without knowledge of how f is called. In the worst case, f is applied to
one argument and the resulting function is applied repeatedly. The closure of
x′ is then used repeatedly so we must assume the worst and let u be equal to
ω. We can then give f the type

Int1 →ω Int1 →ω Intω
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Figure 4: Measurements of whole program analysis

With separate compilation we must make sure that the types of exported func-
tions are general enough to be applicable in all contexts. That is, it must still
be possible to annotate the remaining modules such that the resulting program
is well typed. Luckily, this is always possible if we ensure that the types of all
exported functions have an instance where the positive (covariant) positions in
the type are annotated with ω. In the type of f this is reflected in that the
function arrows and the resulting integer are annotated with ω. Wansbrough
and Peyton Jones [WPJ00] calls this process pessimization. Further discussion
can be found in Wansbrough’s thesis [Wan02].

In the setting of whole program analysis this process in unnecessary which
improves the result of the analysis. We have chosen to evaluate the effect on two
analyses, the polymorphicly recursive analysis with subtyping and the monomor-
phic analysis with subtyping. Both analyses use the aggressive treatment of data
types.

6.1 Evaluation

The average effectiveness for each analysis is shown in Figure 4. Section A.4
shows the effectiveness for each program. They show that whole program anal-
ysis improves both analyses significantly on both unoptimized and optimized
code.

The effect is greater for the monomorphic analysis. The explanation is that
the inaccuracies that are introduced by the pessimization, needed for separate
compilation, spreads further in the monomorphic analysis due to the lack of
context sensitivity. One can think of pessimization as simulating the worst
possible calling context which then spreads to all call sites.

An interesting observation is that there is only a small difference between
the polymorphic and the monomorphic whole program analysis for optimized
code. The combination of aggressive inlining and whole program analysis almost
cancels out the effect of polymorphism.
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7 Related Work

The usage analyses in this paper build on the type based analyses in
[TWM95, Gus98, WPJ99, WPJ00, GS00, Wan02]. The use of polymorphism
in usage analysis was first sketched in [TWM95] and was developed further in
[GS00] and [WPJ00, Wan02] where simple polymorphism was proposed. Usage
subtyping was introduced in [Gus98, WPJ99]. The method for dealing with
data types was suggested independently by Wansbrough [Wan02] and ourselves
[Ged03]. The method for dealing with separate compilation is due to Wans-
brough and Peyton Jones [WPJ99].

The measurements of Wansbrough and Peyton Jones on their monomorphic
analysis with subtyping and a limited treatment of data types showed that is was
”almost useless in practice”. Wansbrough later made thorough measurements
of the precision of simple usage polymorphism with some different treatments
of data types in [Wan02]. He concludes that the accuracy of the simple usage
polymorphism with a good treatment of data types is reasonable which is con-
sistent with our findings. He also compares the accuracy with a monomorphic
usage analysis but the comparison is incomplete – the monomorphic analysis
only has a very coarse treatment of data types.

Foster et al [FFA00a] evaluate the effect of polymorphism and monomor-
phism on Steensgaard’s equality based points-to analysis [Ste96] as well as An-
dersen’s inclusion based points-to analysis [And94]. Their results show that
the inclusion based analysis is substantially better than the unification based.
Adding polymorphism to the equality based analysis also has a substantial ef-
fect but adding polymorphism to the inclusion based analysis gives only a small
improvement.

There are clear analogies between Steensgaard’s equality based analysis and
usage analysis without subtyping. Andersen’s inclusion based analysis relates
to usage analysis with subtyping. Given these relationships, our results are
consistent with the results of Foster et al with one exception – the combination
of polymorphism and subtyping has a significant effect in our setting. However,
when we apply aggressive program transformations prior to the analysis and
run it in whole program analysis mode then our results coincide.

8 Conclusions

We have performed a systematic evaluation of the impact on the accuracy of
four dimensions in the design space of a type based usage analyses for Haskell.
We evaluated

• different degrees of polymorphism: polymorphic recursion, monomorphic
recursion, simple polymorphism and monomorphism,

• subtyping versus no subtyping,

• different treatments of user defined types, and
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• whole program analysis versus analysis compatible with separate compi-
lation.

Our results show that all of these features individually have a significant effect
on the accuracy. A striking outcome was that the results depended very much
on whether the analyzed programs were first subject to aggressively optimizing
program transformations.

Our evaluation of polymorphism and subtyping showed that the polymorphic
analyses clearly outperform their monomorphic counterparts. The effect was
larger when the analyses did not incorporate subtyping. This is not surprising
given that subtyping gives a degree of context sensitivity and, thus, partially
overlaps with polymorphism. Polymorphic recursion turned out to give very
little when compared to monomorphic recursion. For unoptimized code, simple
polymorphism (where variables in types schemas cannot be constrained) was
shown to lie in between monomorphism and constrained polymorphism.

The measurements also showed that the treatment of data types is impor-
tant. The effectiveness of the different alternatives turned out to depend on
whether the code was optimized or not. We believe that the explanation is
coupled to the implementation of Haskell’s class system and, thus, that this
observation might be rather Haskell specific.

Whole program analysis turned out to have a rather large impact. The
effect was greater for monomorphic analysis. The reason is that the conservative
assumptions, that have to be made in the setting of separate compilation, have
larger impact due to the lack of context sensitivity in monomorphic analysis. In
fact, the whole program monomorphic analysis with subtyping was almost as
good as the whole program polymorphic analysis with subtyping on optimized
programs.
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A Detailed Results of the Measurements

In three cases the analysis under consideration ran out of memory when ana-
lyzing a particular program. For these programs the effectiveness is reported as
”-” and is excluded from the computed average.

A.1 Polymorphism

Effectiveness
Program polyrec monorec simple-poly mono

anna 55.61% 54.69% 50.62% 30.64%
bspt 44.98% 44.98% 28.88% 13.98%

cacheprof 38.34% 38.34% 31.76% 12.28%
compress 30.22% 30.22% 18.71% 5.76%
compress2 32.70% 32.70% 20.75% 6.92%

fem 66.55% 66.31% 56.35% 26.50%
fluid 68.84% 68.17% 52.64% 35.47%

fulsom 50.51% 48.48% 37.82% 24.87%
gamteb 59.46% 58.38% 42.16% 22.16%

gg 55.54% 55.25% 45.34% 12.24%
grep 36.02% 36.02% 23.12% 11.29%

hidden 63.92% 63.13% 47.63% 23.58%
hpg 49.51% 45.92% 39.05% 15.20%
infer 48.87% 48.42% 43.02% 18.92%
lift 38.40% 38.02% 34.22% 19.77%

linear 63.90% 63.41% 57.80% 29.76%
maillist 34.90% 34.90% 20.31% 6.25%
mkhprog 46.46% 46.46% 38.19% 9.84%
parser 38.43% 38.43% 34.50% 8.95%

pic 60.71% 59.29% 46.25% 25.00%
polygp 41.86% 41.86% 23.26% 9.30%
prolog 53.42% 53.42% 43.49% 17.81%
reptile 52.64% 50.95% 45.45% 17.97%

rsa 40.36% 38.57% 29.60% 5.83%
rx 65.27% 64.91% 49.82% 32.23%
scs 60.00% 58.69% 47.32% 26.27%

symalg 48.82% 46.75% 38.17% 18.64%
average 49.86% 49.14% 38.75% 18.05%

Figure 5: Polymorphism on unoptimized code
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Effectiveness
Program polyrec monorec simple-poly mono

anna 14.74% 13.14% 12.02% 11.86%
bspt 21.43% 21.43% 19.64% 4.46%

cacheprof 12.03% 12.03% - 10.53%
compress 10.53% 10.53% 0.00% 0.00%
compress2 14.63% 7.32% 0.00% 2.44%

fem 14.89% 14.89% 13.30% 8.51%
fluid 20.28% 20.28% 17.13% 15.38%

fulsom 23.02% 10.32% 7.14% 9.68%
gamteb 4.21% 4.21% 3.16% 2.11%

gg 15.15% 15.15% 12.63% 8.59%
grep 2.63% 2.63% 0.00% 0.00%

hidden 12.50% 10.94% 7.03% 7.03%
hpg 9.57% 9.57% 8.26% 7.83%
infer 2.42% 2.42% 0.00% 0.61%
lift 7.52% 7.52% 6.02% 3.76%

linear 15.56% 15.56% 13.33% 13.33%
maillist 4.76% 4.76% 0.00% 0.00%
mkhprog 1.41% 1.41% 1.41% 1.41%
parser 0.62% 0.62% 0.00% 0.00%

pic 8.62% 8.62% 6.03% 6.03%
polygp 0.00% 0.00% 0.00% 0.00%
prolog 10.45% 10.45% 1.49% 8.96%
reptile 9.00% 9.00% 6.00% 7.00%

rsa 13.33% 13.33% 6.67% 6.67%
rx 26.06% 25.76% - 14.24%
scs 21.74% 21.74% 17.79% 20.16%

symalg 12.16% 12.16% 6.76% 6.76%
average 11.45% 10.58% 6.63% 6.57%

Figure 6: Polymorphism on optimized code
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A.2 Subtyping

Effectiveness
Program polyrec polyrec-nosub mono mono-nosub

anna 55.61% 51.73% 30.64% 2.28%
bspt 44.98% 34.65% 13.98% 2.74%

cacheprof 38.34% 34.62% 12.28% -
compress 30.22% 23.02% 5.76% 3.60%
compress2 32.70% 26.42% 6.92% 3.14%

fem 66.55% 61.63% 26.50% 5.52%
fluid 68.84% 60.02% 35.47% 5.37%

fulsom 50.51% 42.13% 24.87% 4.57%
gamteb 59.46% 50.63% 22.16% 3.78%

gg 55.54% 48.69% 12.24% 2.92%
grep 36.02% 27.42% 11.29% 4.84%

hidden 63.92% 53.64% 23.58% 1.42%
hpg 49.51% 46.08% 15.20% 3.59%
infer 48.87% 44.37% 18.92% 3.60%
lift 38.40% 34.22% 19.77% 4.56%

linear 63.90% 59.76% 29.76% 4.39%
maillist 34.90% 28.65% 6.25% 3.12%
mkhprog 46.46% 40.55% 9.84% 3.15%
parser 38.43% 36.03% 8.95% 0.22%

pic 60.71% 52.14% 25.00% 3.93%
polygp 41.86% 33.72% 9.30% 2.33%
prolog 53.42% 48.29% 17.81% 4.79%
reptile 52.64% 49.05% 17.97% 3.81%

rsa 40.36% 34.98% 5.83% 3.14%
rx 65.27% 56.07% 32.23% 1.25%
scs 60.00% 52.55% 26.27% 5.23%

symalg 48.82% 44.97% 18.64% 5.33%
average 49.86% 43.56% 18.05% 3.56%

Figure 7: Subtyping on unoptimized code
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Effectiveness
Program polyrec polyrec-nosub mono mono-nosub

anna 14.74% 12.50% 11.86% 0.32%
bspt 21.43% 6.25% 4.46% 0.00%

cacheprof 12.03% 3.76% 10.53% 0.00%
compress 10.53% 10.53% 0.00% 0.00%
compress2 14.63% 14.63% 2.44% 0.00%

fem 14.89% 14.36% 8.51% 1.06%
fluid 20.28% 16.08% 15.38% 3.85%

fulsom 23.02% 22.22% 9.68% 2.38%
gamteb 4.21% 4.21% 2.11% 2.11%

gg 15.15% 5.05% 8.59% 1.01%
grep 2.63% 2.63% 0.00% 0.00%

hidden 12.50% 8.59% 7.03% 1.56%
hpg 9.57% 5.65% 7.83% 0.87%
infer 2.42% 1.82% 0.61% 0.00%
lift 7.52% 7.52% 3.76% 0.00%

linear 15.56% 14.44% 13.33% 0.00%
maillist 4.76% 4.76% 0.00% 0.00%
mkhprog 1.41% 0.00% 1.41% 0.00%
parser 0.62% 0.62% 0.00% 0.00%

pic 8.62% 5.17% 6.03% 1.72%
polygp 0.00% 0.00% 0.00% 0.00%
prolog 10.45% 8.96% 8.96% 0.00%
reptile 9.00% 9.00% 7.00% 2.00%

rsa 13.33% 13.33% 6.67% 0.00%
rx 26.06% 19.70% 14.24% 3.03%
scs 21.74% 17.79% 20.16% 0.79%

symalg 12.16% 10.81% 6.76% 4.05%
average 11.45% 8.90% 6.57% 0.92%

Figure 8: Subtyping on optimized code
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A.3 Data Types

Effectiveness
Program no limit 100 10 1 0

anna 55.61% 54.81% 47.97% 45.75% 45.44%
bspt 44.98% 43.16% 27.36% 27.63% 20.36%

cacheprof 38.34% 37.72% 31.39% 30.65% 29.40%
compress 30.22% 30.22% 15.83% 15.83% 15.83%
compress2 32.70% 32.70% 15.72% 15.72% 15.72%

fem 66.55% 64.99% 35.37% 34.89% 34.53%
fluid 68.84% 66.73% 40.94% 38.64% 36.63%

fulsom 50.51% 47.21% 33.76% 32.99% 32.49%
gamteb 59.46% 56.76% 26.49% 26.13% 25.59%

gg 55.54% 54.23% 36.73% 36.15% 35.86%
grep 36.02% 35.48% 22.04% 21.51% 21.51%

hidden 63.92% 62.03% 40.03% 38.77% 36.39%
hpg 49.51% 47.22% 37.75% 37.25% 37.25%
infer 48.87% 43.92% 39.64% 39.19% 38.74%
lift 38.40% 38.40% 33.46% 31.94% 31.56%

linear 63.90% 60.49% 39.51% 39.02% 38.54%
maillist 34.90% 33.33% 17.19% 17.19% 17.19%
mkhprog 46.46% 46.06% 37.40% 37.40% 36.61%
parser 38.43% 38.43% 32.53% 32.53% 32.53%

pic 60.71% 56.07% 34.64% 31.61% 30.36%
polygp 41.86% 40.70% 20.93% 20.93% 20.93%
prolog 53.42% 52.40% 41.44% 40.41% 40.41%
reptile 52.64% 52.43% 37.63% 37.00% 37.00%

rsa 40.36% 39.91% 30.04% 30.04% 29.15%
rx 65.27% 64.64% 45.45% 42.50% 39.55%
scs 60.00% 57.39% 37.12% 36.21% 34.12%

symalg 48.82% 47.04% 35.50% 35.21% 35.21%
average 49.86% 48.31% 33.11% 32.34% 31.44%

Figure 9: Data types on unoptimized code
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Effectiveness
Program no limit 100 10 1 0

anna 14.74% 14.74% 14.42% 13.46% 13.46%
bspt 21.43% 21.43% 21.43% 21.43% 6.25%

cacheprof 12.03% 12.03% 12.03% 7.52% 4.51%
compress 10.53% 10.53% 10.53% 10.53% 10.53%
compress2 14.63% 14.63% 12.20% 12.20% 12.20%

fem 14.89% 14.89% 14.89% 14.36% 14.36%
fluid 20.28% 20.28% 20.28% 19.23% 16.43%

fulsom 23.02% 23.02% 23.02% 23.02% 22.22%
gamteb 4.21% 4.21% 4.21% 4.21% 4.21%

gg 15.15% 15.15% 14.65% 10.10% 5.05%
grep 2.63% 2.63% 2.63% 2.63% 2.63%

hidden 12.50% 12.50% 12.50% 10.16% 9.38%
hpg 9.57% 9.57% 9.57% 9.13% 9.13%
infer 2.42% 2.42% 2.42% 1.82% 1.82%
lift 7.52% 7.52% 7.52% 7.52% 7.52%

linear 15.56% 15.56% 15.56% 14.44% 14.44%
maillist 4.76% 4.76% 4.76% 4.76% 4.76%
mkhprog 1.41% 1.41% 1.41% 1.41% 1.41%
parser 0.62% 0.62% 0.62% 0.62% 0.62%

pic 8.62% 8.62% 8.62% 8.62% 4.31%
polygp 0.00% 0.00% 0.00% 0.00% 0.00%
prolog 10.45% 10.45% 10.45% 10.45% 8.96%
reptile 9.00% 9.00% 9.00% 8.00% 8.00%

rsa 13.33% 13.33% 13.33% 13.33% 13.33%
rx 26.06% 22.42% 22.12% 16.36% 15.76%
scs 21.74% 21.74% 21.74% 19.76% 18.97%

symalg 12.16% 12.16% 12.16% 10.81% 10.81%
average 11.45% 11.32% 11.19% 10.22% 8.93%

Figure 10: Data types on optimized code
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A.4 Whole Program Analysis

Effectiveness
Program polyrec polyrec-whole mono mono-whole

anna 55.61% 59.80% 30.64% 44.27%
bspt 44.98% 48.33% 13.98% 29.79%

cacheprof 38.34% 69.85% 12.28% 25.81%
compress 30.22% 40.29% 5.76% 19.42%
compress2 32.70% 38.39% 6.92% 23.90%

fem 66.55% 69.42% 26.50% 54.92%
fluid 68.84% 73.35% 35.47% 57.62%

fulsom 50.51% 61.68% 24.87% 47.46%
gamteb 59.46% 63.24% 22.16% 48.65%

gg 55.54% 57.73% 12.24% 27.11%
grep 36.02% 43.55% 11.29% 20.97%

hidden 63.92% 71.04% 23.58% 47.15%
hpg 49.51% 54.41% 15.20% 30.23%
infer 48.87% 63.29% 18.92% 35.59%
lift 38.40% 44.11% 19.77% 28.90%

linear 63.90% 71.71% 29.76% 59.02%
maillist 34.90% 45.31% 6.25% 21.88%
mkhprog 46.46% 52.76% 9.84% 18.11%
parser 38.43% 40.39% 8.95% 27.29%

pic 60.71% 66.07% 25.00% 50.71%
polygp 41.86% 52.33% 9.30% 19.77%
prolog 53.42% 60.62% 17.81% 34.59%
reptile 52.64% 57.93% 17.97% 33.83%

rsa 40.36% 44.84% 5.83% 32.74%
rx 65.27% 71.25% 32.23% 57.05%
scs 60.00% 69.54% 26.27% 50.98%

symalg 48.82% 53.55% 18.64% 39.64%
average 49.86% 57.21% 18.05% 36.57%

Figure 11: Whole program analysis on unoptimized code
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Effectiveness
Program polyrec polyrec-whole mono mono-whole

anna 14.74% 17.63% 11.86% 17.63%
bspt 21.43% 22.32% 4.46% 22.32%

cacheprof 12.03% 16.54% 10.53% 16.54%
compress 10.53% 21.05% 0.00% 21.05%
compress2 14.63% 24.39% 2.44% 24.39%

fem 14.89% 19.15% 8.51% 18.62%
fluid 20.28% 32.52% 15.38% 24.13%

fulsom 23.02% 35.71% 9.68% 35.71%
gamteb 4.21% 18.95% 2.11% 18.95%

gg 15.15% 18.18% 8.59% 18.18%
grep 2.63% 7.89% 0.00% 7.89%

hidden 12.50% 26.56% 7.03% 23.44%
hpg 9.57% 12.61% 7.83% 11.74%
infer 2.42% 15.76% 0.61% 15.15%
lift 7.52% 16.54% 3.76% 15.79%

linear 15.56% 22.22% 13.33% 20.00%
maillist 4.76% 19.05% 0.00% 19.05%
mkhprog 1.41% 1.41% 1.41% 1.41%
parser 0.62% 1.88% 0.00% 1.88%

pic 8.62% 15.52% 6.03% 15.52%
polygp 0.00% 7.69% 0.00% 7.69%
prolog 10.45% 14.93% 8.96% 14.93%
reptile 9.00% 15.00% 7.00% 15.00%

rsa 13.33% 26.67% 6.67% 26.67%
rx 26.06% 39.39% 14.24% 23.03%
scs 21.74% 32.02% 20.16% 32.02%

symalg 12.16% 16.22% 6.76% 16.22%
average 11.45% 19.18% 6.57% 17.96%

Figure 12: Whole program analysis on optimized code
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Embedding Static Analysis into Tableaux and

Sequent based Frameworks

Tobias Gedell

Abstract

In this paper we present a method for embedding static analysis into
tableaux and sequent based frameworks. In these frameworks, the infor-
mation flows from the root node to the leaf nodes. We show that the
existence of free variables in such frameworks introduces a bi-directional
flow, which can be used to collect and synthesize arbitrary information.

We use free variables to embed a static program analysis in a sequent
style theorem prover used for verification of Java programs. The analysis
we embed is a reaching definitions analysis, which is a common and well-
known analysis that shows the potential of our method.

The achieved results are promising and open up for new areas of ap-
plication of tableaux and sequent based theorem provers.

1 Introduction

The aim of our work is to integrate static program analysis into theorem provers
used for program verification. In order to do so, we must bridge the mismatch
between the synthetic nature of static program analysis and analytic nature
of tableaux and sequent calculi. One of the major differences is the flow of
information.

In a program analysis, information is often synthesized by dividing a program
into its subcomponents, calculating some information for each component and
then merging the calculated information. This gives a flow of information that
is directed bottom-up, with the subcomponents at the bottom.

Both tableaux and sequent style provers work in the opposite way. They take
a theorem as input and, by applying the rules of their calculi, gradually divide it
into branches, corresponding to logical case distinction, until all branches can be
proved or refuted. In a ground calculus, there is no flow of information between
the branches. Neither is there a need for that since the rules of the calculus
only extend the proof by adding new nodes. Because of this, the information
flow in a ground calculus is uni-directional—directed top-down, from the root
to the leafs of the proof tree.

Tableaux calculi are often extended with free variables which are used for
handling universal quantification (in the setting of sequent calculi, free vari-
ables correspond to meta variables, which are used for existential quantification)
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[Fit96]. Adding free variables breaks the uni-directional flow of information.
When a branch chooses to instantiate a free variable, the instantiation has to
be made visible at the point where the free variable was introduced. Therefore,
some kind of information flow backwards in the proof has to exist. By exploit-
ing this bi-directional flow we can collect and synthesize arbitrary information
which opens up for new areas of application of the calculi.

We embed our program analysis in a sequent calculus using meta variables.
The reason for choosing a program analysis is that logics for program verification
could greatly benefit from an integration with program analysis. An example of
this is the handling of loops in programs. Often a human must manually handle
things like loops and recursive functions. Even for program constructs, which a
verification system can cope with automatically, the system sometimes performs
unnecessary work. Such a system could benefit from having a program analysis
that could cheaply identify loops and other program constructs that can be
handled using specialized rules of the program logics that do not require user
interaction. An advantage of embedding a program analysis in a theorem prover
instead of implementing it in an external framework, is that it allows for a closer
integration of the analysis and prover.

The main contributions of this work are that:

• We show how synthesis can be performed in a tableau or sequent style
prover, which opens up for new areas of application.

• We show how the rules of a program analysis can be embedded into a pro-
gram logic and coexist with the original rules by using a tactic language.

• We give a proof-of-concept of our method. We do this by giving the full
embedding of a program analysis in an interactive theorem prover.

The outline of this paper is as follows: In Section 2 we elaborate more on how
we use the bi-directional flow of information; In Section 3 we briefly describe
the theorem prover used for implementing our program analysis; In Section 4
we describe the program analysis; in Section 5 we present the embedding of the
analysis in the theorem prover; in Section 6 we draw some conclusions; and in
Section 7 we discuss future work.

2 Flow of Information

By using the mechanism for free variables we can send information from arbi-
trary nodes in the proof to nodes closer to the root. This is very useful to us
since our program analysis needs to send information from the subcomponents
of the program to the root node. In a proof, the subcomponents of the program
correspond to leaf nodes. To show how it works, consider a tableau created with
a destructive calculus where, at the root node, a free variable I is introduced.
When I is instantiated by a branch closure, the closing substitution is applied
to all branches where I occurs. This allows us to embed various analyses. One
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could, for example, imagine a very simple analysis that finds out whether a
property P is true for any branch in a proof. In order to do so, we modify the
closure rule. Normally, the closure rule tries to find two formulas ϕ and ¬ψ
in the same branch and a substitution that unifies ϕ and ψ. The new closure
rule is modified to search for a closing substitution for a branch and if it finds
one, check whether P is true for the particular branch. If it is, then the closing
substitution is extended with an instantiation of the free variable I to a constant
symbol c. We can now use this calculus to construct a proof as usual and when
it is done, check whether I has been instantiated or not. If it has, then we know
that P was true for at least one of the branches. Note that we are not interested
in what I was instantiated to, just the fact that it was instantiated.

There is still a limit to how much information that can be passed to the
root node. It is not possible to gather different information from each branch
closure since they all use the same variable, I , to send their information. In
particular, the reaching definitions analysis that we want to embed needs to be
able to compute different information for each branch in the proof.

This can be changed by modifying the extension rule. When two branches
are created in a proof, two new free variables, IL and IR, are introduced and
I instantiated to branch(IL, IR). IL is used as the new I-variable for the left
branch and IR for the right branch. By doing this we ensure that each branch
has its own variable for sending information. This removes the possibility of
conflicting instantiations, since each I-variable will be instantiated at most once,
either by extending or closing the branch to which it belongs.

When the tableau shown in Figure 1 has been closed, we get the instantiation
of I , which will be the term branch(branch(info1, info2), branch(info3, info4))
that contains the information collected from all four branches. We have now
used the tableau calculus to synthesize information from the leaf nodes.

We are now close to being able to implement our program analysis. The
remaining problem is that we want to be able to distinguish between different
types of branches. An example of this is found in Section 4.2 where differ-
ent types of branches compute different collections of equations. We overcome
this problem by, instead of always using the function symbol branch, allowing
arbitrary function symbols when branching.

2.1 Non Destructive Calculi

In a non destructive constraint tableau, as described in [Gie01], it is possible to
embed analyses using the same method.

In a constraint tableau, each node n has a sink object that contains all
closing substitutions for the sub tableau having n as its top node. When adding
a node to a branch, all closing substitutions of the branch are added to the
node’s sink object. The substitutions in the sink object are then sent to the
sink object of the parent node. If the parent node is a node with more than one
child, it has a merger object that receives the substitution and checks whether
it is a closing substitution for all children. If it is, then it is propagated upwards
to the sink object of the parent node, otherwise it is discarded. If the parent
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Figure 1: Example tableau

node only has one child, the substitution is directly sent to the node’s parent
node.

A tableau working like this is called non destructive since the free variables
are never instantiated. Instead, a set of all possible closing instantiations is cal-
culated for each branch and propagated upwards. When a closing substitution
reaches the root node, the search is over since we know that it closes the entire
tableau.

Using our method in a non destructive constraint tableau is easy. We modify
the sink object of the root node to not only, when a closing substitution is found,
tell us that the tableau is closable but also give us the closing substitution. The
infrastructure with the sink objects could also make it easy to implement some
of the extensions described in Section 7.

3 The KeY Prover

For the implementation, we choose an interactive theorem prover with a tactic
programming language, the KeY system [ABB+05]. The KeY system is a theo-
rem prover for the Java Card language that uses a dynamic logic [Bec01]. The
dynamic logic is a modal logic in which Java programs can occur as parts of
formulas. An example of this is the formula,

<{ i = 1; }> i > 0 ,

that denotes that after executing the assignment i = 1; the value of the variable
i is greater than 0.

The KeY system is based on a non destructive sequent calculus with a stan-
dard semantics. It is well known that sequent calculi can be seen as the duality
of tableaux calculi and we use this to carry over the method described in Section
2 to the sequent calculus used by KeY.
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3.1 Tactic Programming Language

Theorem provers for program verification typically need to have a large set of
rules at hand to handle all constructs in a language. Instead of hard-wiring these
into the core of the theorem prover, one can opt for a more general solution and
create a domain specific tactic language, which is used to implement the rules.

The rules written in the tactic language of KeY are called taclets [BGH+04].
A taclet can be be seen as an implementation of a sequent calculus rule. In
most theorem provers for sequent calculi, the rules perform some kind of pattern
matching on sequents. Typically, the rules consist of a guard pattern and an
action. If a sequent matches the guard pattern then the rule is applied and the
action performed on the sequent. What it means for the pattern of a taclet to
match a sequent is that there is a unifying substitution for the pattern and the
sequent under consideration. The actions that can be performed include closing
a proof branch, creating modified copies of sequents, and creating new proof
branches.

We now have a look at the syntax of the tactic language and start with one
of the simplest rules, the close by true rule.

close_by_true {

find (==> true)

close goal

};

The pattern matches sequents where true can be found on the right hand
side. If true can be found on the right hand side, we know that we can close the
proof branch under consideration, which is done by the close goal action.

If we, instead of closing the branch, want to create a modified copy of the
sequent we use the replacewith action.

not_left {

find (!b ==>)

replacewith (==> b)

};

If we find a negated formula b on the left hand side we replace it with b on the
right hand side.1The proof branch will remain open, but contain the modified
sequent. We can also create new proof branches by using multiple replacewith
actions.

So far, we have only considered sequents that do not contain embedded Java
programs. When attaching programs to formulas, one has to choose a modality
operator. There are a number of different modality operators having different
semantics. The diamond operator <{p}>φ says that there is a terminating ex-
ecution of the program p after which the formula φ holds. The box operator
[{p}]φ says that after all terminating executions the formula φ holds. For our
purpose, the modalities do not have any meaning since we are not trying to

1Note that Γ and ∆ are only implicitly present in the taclet.



42 Tobias Gedell

construct a proof in the traditional way. Regardless of this, the syntax of the
taclet language forces us to have a modality operator attached to all programs.
We, therefore, arbitrarily choose to use the diamond operator. In the future, it
would be better to have a general-purpose operator with a free semantics that
could be used for cases like this.

As an example of a taclet matching an embedded Java program, consider the
following taclet, that matches an assignment of a literal to a variable attached
to the formula true and closes the proof branch:

term_assign_literal {

find (==> <{#var = #literal;}>(true))

close goal

};

4 Reaching Definitions Analysis

The analysis we choose to implement using our technique is reaching definitions
analysis [NNH99]. This analysis is commonly used by compilers to perform
several kinds of optimization such as, for example, loop optimization and con-
stant computation [ASU86]. The analysis calculates which assignments may
reach each individual statement in a program. Consider the following program,
consisting of three assignments, where each statement is annotated with a label
so that we can uniquely identify them.

a
0

= 1; b
1

= 1; a
2

= 1;

Let us look at the statement annotated with 1. The statement executed
before it (which we will call its previous statement) is the assignment a

0

= 1;

and since a has not yet been reassigned it still contains the value 1. We say that
the assignment annotated with 0 reaches the statement annotated with 1. For
each statement, we calculate the set of labels of the assignments that reach the
statement before and after it has been executed. We call these sets the entry
and exit sets. For this example, the label 0 will be in the entry set of the last
assignment but not in its exit set, since the variable a is re-assigned. We do
not just store the labels of the assignments in the sets, but also the name of
the variable that is assigned. The complete entry and exit sets for our example
program look as follows:

label Entry Exit
0 {} {(a, 0)}
1 {(a, 0)} {(a, 0), (b, 1)}
2 {(a, 0), (b, 1)} {(b, 1), (a, 2)}

It is important to understand that the results of the analysis will be an
approximation. It is undecidable to calculate the exact reaching information,
which can easily be proven by using the halting problem. We will, however,
ensure that the approximation is safe, which in this context means that if an
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assignment reaches a statement then the label of the assignment must be present
in the entry set of that statement. The reverse may not hold, a label of an
assignment being present in an entry set of a statement, does not necessarily
mean that the assignment may reach that statement.

It is easy to see that for any program, a sound result of the analysis would
be to let all entry and exit sets be equal to the set of all labels occurring in
the program. This result would, of course, not be useful; what we want are as
precise results as possible.

The analysis consists of two parts: a constraint-generation part and a
constraint-solving part. The constraint-generation part traverses the program
and generates a collection of equations defining the entry and exit sets. The
equations are then solved by the constraint-solving part that calculates the
actual sets.

4.1 Input Language

As input language, we choose a very simple language, the WHILE-language,
which consists of assignments, block statements and if- and while-statements.
We choose a simple language because we do not want to wrestle with a large
language but instead show the concept of how the static program analysis can
be implemented.

In the language, a program consists of a number of statements.

Programs program ::= stmt+

Statements stmt ::= var
lbl
= expr;

| iflbl(term) stmt else stmt
| whilelbl(term) stmt
| {stmt∗}

lbl ranges over the natural numbers and will be unique for each statement.
We do not annotate block statements since they are just used to group multiple
statements.

To simplify our analysis, we impose the restriction that all expressions expr
must be free from side-effects. Since removing side-effects from expressions is
a simple and common program transformation, this restriction is reasonable to
make.

4.2 Rules of the Analysis

We now look at the constraint-generation part of the analysis and start by
defining the collections of equations that will be generated. These equations
will characterize the reaching information in the analyzed program.
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Equations Π ::= ∅
| Entry(lbl) = Σ
| Exit(lbl) = Σ
| Π∧Π

(1)

∅ is the empty collection of equations. Entry(lbl) = Σ and Exit(lbl) = Σ
are equations defining the entry and exit sets of the statement annotated with
lbl to be equal to the set expression Σ. We let ∧ be the conjunction operator
that merges two collections of equations.

The set expressions,

Set expressions Σ ::= ∅
| (var, lbl)
| Entry(lbl)
| Exit(lbl)
| Σ∪Σ
| Σ-Σ

, (2)

are used to build up the entry and exit sets. ∅ is the empty set (the overload-
ing of this symbol will not cause any confusion). (var, lbl) is the set consisting of
only a single reaching assignment. Entry(lbl) and Exit(lbl) refer to the values
of the entry and exit sets of the statement annotated with lbl. ∪ and - are the
union and difference operators.

The rules of the analysis are of the form `0 ` s ⇓ `1 : Π, where s is
the statement under consideration, `0 is the label of the statement executed
before s (we will sometimes call this statement the previous statement), `1 the
label of the last executed statement in s, and Π the equations characterizing the
reaching information of the statement s.

The intuition behind this form is that we need to know the label of the
statement executed before s because we will use its exit set when analyzing
s. After we have analyzed s, we need to know the label of the last executed
statement in s (which will often be s itself) because the statement executed
after s needs to use the right exit set. Then, the most important thing to know
is, of course, what equations were collected when analyzing s.

In the assignment rule,

Assign

`0 ` x
`1
= e; ⇓ `1 : Entry(`1) = Exit(`0) ∧

Exit(`1) = (x, `1) ∪ (Entry(`1) −
⋃

`∈lbl

(x, `))

,

we know that the reaching assignments in the entry set will be exactly those
that were reaching after the previous statement was executed. This is expressed
by the equation Entry(`1) = Exit(`0). For the exit set, we know that all
previous assignments of x will no longer be reaching. The assignments of all
other variables will remain untouched. We therefore let the exit set be equal
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to the entry set from which we have first removed all previous assignments of
x and then added the assignment (x, `1). This is expressed by the equation
Exit(`1) = (x, `1) ∪ (Entry(`1) −

⋃

`∈lbl
(x, `)).

So far, we have not seen the need for including the label of the previous
statement in the rules. This is illustrated by the rule for if-statements:

If

`0 ` s0 ⇓ `2 : Π0 `0 ` s1 ⇓ `3 : Π1

`0 ` if`1(e) s0 else s1 ⇓ `1 : Π0 ∧ Π1 ∧ Entry(`1) = Exit(`0) ∧
Exit(`1) = Exit(`2) ∪ Exit(`3)

For an if-statement, the entry set will be equal to the exit set of the previous
statement, which is expressed by the equation Entry(`1) = Exit(`0). When
analyzing the two branches s0 and s1, we use l0 as the label of the previous
statement since it is important that they, when referring to the exit set of the
previous statement, use Exit(l0) and not the exit set of the if-statement. From
the two branches, we get the collections of the generated equations Π0 and
Π1, along with the labels l2 and l3, which are the labels of the last executed
statements in s0 and s1. Since we do not know which branch is going to be
taken, we must approximate and assume that both branches can be taken. The
exit set of the if-statement will therefore be equal to the union of the exit
set of the last executed statements in s0 and s1, expressed by the equation
Exit(`1) = Exit(`2) ∪ Exit(`3).

The rule for while-statements,

While

`1 ` s ⇓ `2 : Π0

`0 ` while`1(e) s ⇓ `1 : Π0 ∧ Entry(`1) = Exit(`0) ∪ Exit(`2) ∧
Exit(`1) = Entry(`1)

,

differs significantly from the rule for if-statements. For the entry set, we include
the exit set of the last executed statement before the loop, but also the exit
set of the last executed statement in the loop body. We must do this because
there are two execution paths leading to the while loop. The first is from the
statement executed before the loop, and the second from executing the loop
body. For the exit set, we do not know if the body was executed or not. We
could, therefore, let the exit set be equal to the union of the entry set of the
while-statement and the exit set of the last executed statement in s. Since this
is exactly what the entry set is defined to be, we just let the exit set be equal
to the entry set. When analyzing the body of the loop we must once again
approximate. The first time s is executed, it should use the exit set of l0, since
that was the last statement executed. The second time and all times after that,
it should instead use the exit set of l1, since the body of the while loop was the
last statement executed. We approximate this by not separating the two cases
and always use l1 as the label of the previous statement.

We do not have a special rule for programs. Instead, we treat a program as
a block statement and use the rules for sequential statements, which should not
require much description:
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Seq-Empty

`0 ` {} ⇓ `0 : ∅

Seq

`0 ` s1 ⇓ `1 : Π1 · · · `n−1 ` sn ⇓ `n : Πn

`0 ` {s1 . . . sn} ⇓ `n : Π1 ∧ · · · ∧ Πn

5 Embedding the Analysis into the Prover

5.1 Encoding the Datatypes

In order to encode Σ, Π, and labels, we must declare the types we want to use.
We declare VarSet which is the type of Σ, Equations which is the type of Π
and Label which is the type of labels. The type of variable names, Quoted, is
already defined by the system.

In the constructors for Σ, defined by (2), we have, for convenience, replaced
the difference operator with the constructor CutVar. CutVar(s, x) denotes
the set expression s −

⋃

`∈lbl
(x, `). Our constructors are defined as function

symbols by the following code:

VarSet Empty;

VarSet Singleton(Quoted, Label);

VarSet Entry(Label);

VarSet Exit(Label);

VarSet Union(VarSet, VarSet);

VarSet CutVar(VarSet, Quoted);

The constructors for Π, defined by (1), are defined analogously to the ones
for Σ:

Equations None;

Equations EntryEq(Label, VarSet);

Equations ExitEq(Label, VarSet);

Equations Join(Equations, Equations);

The KeY system does not feature a unique labeling of statements so we
need to annotate each statement ourselves. In order to generate the labels we
define the Zero and Succ constructors with which we can easily enumerate all
needed labels. The first label will be Zero, the second Succ(Zero), the third
Succ(Succ(Zero)), and so on.

Label Zero;

Label Succ(Label);

Since the rules of the analysis refer back to the exit set of the previous state-
ment, there is a problem with handling the very first statement of a program
(which does not have any previous statement). To solve this problem we define
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the label Start which we exclusively use as the label of the (non-existing) state-
ment before the first statement. When solving the equations we let the exit set
of this label, Exit(Start), be the empty set.

Label Start;

Since one can only attach formulas to embedded Java programs, we need to
wrap our parameters in a predicate. The parameters we need are exactly those
used in our judgments,

`0 ` s ⇓ `1 : Π .

We wrap the label of the previous statement, `0, the label of the last executed
statement, `1, and the collection of equations, Π, in a predicate called wrapper
(we do not need to include the statement s since the wrapper will be attached to
it). In the predicate, we also include two labels needed for the generation of the
labels used for annotating the program: the first unused label before annotating
the statement and the first unused label after annotated the statement. The
wrapper formula looks as follows:

wrapper(Label, Label, Equations, Label, Label);

5.2 Encoding the Rules

Before implementing the rules of our analysis as taclets, we declare the variables
that we want to use in our taclets. These declarations should be fairly self
explanatory.

program variable #x;

program simple expression #e;

program statement #s, #s0, #s1;

Equations pi0, pi1, pi2;

Label lbl0, lbl1, lbl2, lbl3, lbl4, lbl5;

Quoted name;

We now look at how the rules of the analysis are implemented and start with
the rule for empty block statements. When implemented as a taclet we let it
match an empty block statement, written as <{ {} }>, and a wrapper formula
where the first argument is equal to the second argument, the collection of
equations is empty, and the fourth argument is equal to the fifth. The formula
pattern is written as wrapper(lbl0, lbl0, None, lbl1, lbl1). The action
that should be performed when this rule is applied is that the current proof
branch should be closed. This is the case because the Seq-Empty rule has no
premises. The complete taclet is written as follows:

rdef_seq_empty {

find (==> <{{}}>(wrapper(lbl0, lbl0, None, lbl1, lbl1)))

close goal

};
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The rule for non-empty block statements is a bit more tricky. The rule han-
dles an arbitrary number of statements in a block statement. This is, however,
hard to express in the taclet language. Instead, we modify the rule to separate
the statements into the head and the trailing list. This is equivalent to the
original rule except that a block statement needs one application of the rule for
each statement it contains. After being modified, the rule looks like this, where
we let s̄2 range over lists of statements:

Seq-modified

`0 ` s1 ⇓ `1 : Π1 `1 ` {s̄2} ⇓ `2 : Π2

`0 ` {s1 s̄2} ⇓ `2 : Π1 ∧ Π2

When implemented as a taclet, we let it match the head and the tail of the
list, written as <{.. #s1 ...}>. In this pattern, #s1 matches the head and the
dots, .. ...2, match the tail. We also let it match a wrapper formula containing
the necessary labels together with the conjunction of the two collections of
equations Π1 and Π2. For each premise, we create a proof branch by using the
replacewith action. Note how the two last labels are threaded through the
taclet:

rdef_seq {

find (==> <{.. #s1 ...}>(wrapper(lbl0, lbl2, Join(pi1, pi2),lbl3,lbl5)))

replacewith (==> <{#s1}>(wrapper(lbl0, lbl1, pi1, lbl3, lbl4)));

replacewith (==> <{.. ...}>(wrapper(lbl1, lbl2, pi2, lbl4, lbl5)))

};

In the rule for assignments, we must take care of the annotation of the
assignment. Since we know that the fourth argument in the wrapper predicate
is the first free label, we bind lbl1 to it. We then use lbl1 to annotate the
assignment. Since we have now used that label, we must increment the counter
of the first free label. We do that by letting the fifth argument be the successor
of lbl1. (Remember that the fifth argument in the wrapper predicate is the
first free label after annotated the statement.) In the taclet we use a varcond
construction to bind the name of the variable matching #x to name.

rdef_assign {

find (==> <{#x = #e;}>

(wrapper(lbl0, lbl1,

Join(EntryEq(lbl1, Exit(lbl0)),

ExitEq (lbl1, Union(Singleton(name, lbl1),

CutVar(Entry(lbl1), name)))),

lbl1, Succ(lbl1))))

varcond (name quotes #x)

close goal

};

2The leading two dots match the surrounding context which for our analysis is known to
always be empty. They are however still required by the KeY system.
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The taclet for if-statements is larger than the previously shown taclets, but
since it introduces no new concepts, it should be easily understood:

rdef_if {

find (==> <{if(#e) #s0 else #s1}>

(wrapper(lbl0, lbl1,

Join(Join(pi0, pi1),

Join(EntryEq(lbl1, Exit(lbl0)),

ExitEq (lbl1, Union(Exit(lbl2), Exit(lbl3))))),

lbl1, lbl5)))

replacewith (==> <{#s0}>(wrapper(lbl0, lbl2, pi0, Succ(lbl1), lbl4)));

replacewith (==> <{#s1}>(wrapper(lbl0, lbl3, pi1, lbl4, lbl5)))

};

This is also the case with the taclet for while-statements and it is, therefore,
left without further description:

rdef_while {

find (==> <{while(#e) #s}>

(wrapper(lbl0, lbl1,

Join(pi0, Join(EntryEq(lbl1, Union(Exit(lbl0),Exit(lbl2))),

ExitEq (lbl1, Entry(lbl1)))),

lbl1, lbl3)))

replacewith (==> <{#s}>(wrapper(lbl1, lbl2, pi0, Succ(lbl1), lbl3)))

};

5.3 Experiments

We have tested the implementation of our analysis on a number of different
programs. For all tested programs the analysis gave the expected entry and
exit sets, which is not that surprising since there is a one-to-one correspondence
between the rules of the analysis and the taclets implementing them.

As an example, consider the minimal program a = 1;, consisting of only an
assignment. We embed this program in a formula, over which we existentially
quantify the equations, s, the label of the last executed statement, lbl0, and
the first free label after annotated the program, lbl1:

ex lbl0:Label. ex s:Equations. ex lbl1:Label.

<{ a = 1; }>wrapper(Start, lbl0, s, Zero, lbl1)

When applying the rules of the analysis, the first thing that happens in
that lbl0, s, and lbl1 are instantiated with meta variables. This is done by a
built-in rule for existential quantification. The resulting formula is the following
where L0, S and L1 are meta variables:

<{ a = 1; }>wrapper(Start, L0, S, Zero, L1)

We know that the KeY system will succeed in automatically applying the
rules since the analysis is complete and, therefore, works for all programs. Being
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complete is an essential property for all program analyses and for our analysis
it is easy to see that for any program there exists a set of equations which
characterize the reaching information of the program.

When the proof has been created, we fetch the instantiation of all meta
variables, which for our example are the following.

{

S : Equations =

Join(

EntryEq(L0, Exit(Start)),

ExitEq (L0, Union(Singleton(a, L0), CutVar(Entry(L0), a)))),

L0 : Label = Zero,

L1 : Label = Succ(L0)

}

We take these constraints and let a stand-alone constraint solver solve them.
Recall that the analysis is divided into two parts. The first part, which is done
by the KeY system, is to collect the constraints. The second part, which is done
by the constraint solver, solves the constraints.

The constraint solver extracts the equations from the constraints and solves
them yielding the following sets, which is the expected result:

Entry_0 = {}

Exit_0 = {(a, 0)}

6 Conclusions

It is interesting to see how well-suited an interactive theorem prover such as
the KeY system is to embed the reaching definitions analysis in. One reason
for this is that the rules of the dynamic logic are, in a way, not that different
from the rules of the analysis. They are both syntax-driven, i.e., which rule
to apply is decided by looking at the syntactic shape of the current formula
or statement. This shows that theorem provers with free variables or meta
variables can be seen as not just theorem provers for a specific logic but, rather,
as generic frameworks for syntactic manipulation of formulas. Having this view,
it is not that strange that we can be rather radical and disregard the usual
semantic meaning of the tactic language, and use it for whatever purpose we
want.

The key feature that allows us to implement our analysis is the machinery for
meta variables, that we use to create a bi-directional flow of information. Using
meta variables, we can let our analysis collect almost any type of information.
We are, however, limited in what calculation we can do on the information.
So far, we cannot do any calculation on the information while constructing the
proof. We cannot, for example, do any simplification of the set expressions. One
possible way of overcoming this would be to extend the constraint language to
not just include syntactic constraints but also semantic constraints.
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When it comes to the efficiency of the implementation of the constraint-
generation part, it is a somewhat open issue. One can informally argue that the
overhead of using the KeY system, instead of writing a specialized tool for the
analysis, should be a constant factor. It might be the case that one needs to
optimize the constraint solver to handle unification constraints in a way that is
more efficient for the analysis. An optimized constraint solver should be able to
handle all constraints, generated by the analysis, in a linear way.

7 Future Work

This work presented in this paper is a starting point and opens up for a lot of
future work:

• Try different theorem provers to see how well the method presented in this
paper works for other theorem provers.

• Further analyse the overhead of using a theorem prover to implement
program analyses.

• Modify the calculus of the KeY prover to make use of the information
calculated by the program analysis. We need to identify where the result of
the analysis can help and how the rules of the calculus should be modified
to use it. It is when this is done that the true potential of the integration
is unleashed.

• Explore other analyses. We chose to implement the reaching definitions
analysis because it is a well known and simple analysis that is well suited
for illustrating our ideas. Now that we have shown that it is possible to
implement a static program analysis in the KeY system, it is time to look
for the analyses that would benefit the KeY system the most. Among the
possible candidates for this are:

– An analysis that calculates the possible side-effects of a method. For
example what objects and variables that may change.

– A path-based flow analysis helping the KeY system to resolve aliasing
problems.

– A flow analysis calculating the set of possible implementation classes
of objects. This would help reducing the branching for abstract types
like interfaces and abstract classes

– A null pointer analysis that identifies object references which are not
equal to null. This would help the system which currently has to
always check whether a reference is equal to null before using it.

One limitation of the sequent calculus in the KeY prover is that the unifi-
cation constraints, used for instantiating the meta variables, can only express
syntactic equality. This is a limitation since it prevents the system from doing
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any semantic simplification of the synthesized information. If it was able to
perform simplification of the information while it is synthesized, not only could
it make the whole process more efficient, but also let it guide the construction of
the proof to a larger extent. Useful extensions of the constraint language are for
example the common set operations: test for membership, union, intersection,
difference and so on. In a constraint tableaux setting, the simplification of these
operations would then take place in the sink objects associated with each node
in the proof.

A more general issue that is not just specific to the work presented in this
paper is on which level static program analysis and theorem proving should be
integrated. The level of integration can vary from having a program analysis run
on a program and then give the result of the analysis together with the program
to a theorem prover, to having a general framework in which program analysis
and theorem proving are woven together. The former kind of integration is no
doubt the easiest to implement but also the most limited. The latter is much
more dynamic and allows for an incremental exchange of information between
the calculus of the prover and program analysis.
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Automating Verification of Loops by

Parallelization

Tobias Gedell Reiner Hähnle

Abstract

Loops are a major bottleneck in formal software verification, because
they generally require user interaction: typically, induction hypotheses or
invariants must be found or modified by hand. This involves expert knowl-
edge of the underlying calculus and proof engine. We show that one can
replace interactive proof techniques, such as induction, with automated
first-order reasoning in order to deal with parallelizable loops, where a
loop can be parallelized whenever it avoids dependence of the loop iter-
ations from each other. We develop a dependence analysis that ensures
parallelizability. It guarantees soundness of a proof rule that transforms a
loop into a universally quantified update of the state change information
represented by the loop body. This makes it possible to use automatic
first order reasoning techniques to deal with loops. The method has been
implemented in the KeY verification tool. We evaluated it with represen-
tative case studies from the Java Card domain.

1 Introduction

It is generally agreed that loops and recursive calls are the main bottleneck
in formal software verification. The source of the problem is that loops and
recursion are proof theoretically handled either with invariant rules or with
induction. In both cases, it is necessary in general to strengthen invariants and
induction hypotheses in order to make proofs go through. There are also many
technicalities with those rules that make their application difficult. A number
of heuristic techniques have been developed to guide induction proofs and to
find appropriate induction hypotheses (for example, [BM88, BBHI05]).

The context of the present work is formal verification of functional properties
of sequential Java programs [ABB+05]. Here the situation is aggravated by the
fact that the above mentioned techniques have been developed for relatively
simple functional programming languages and are not readily applicable to a
complex, imperative, object-based language such as Java (similar comments
apply to C, C++, or C#). Hence, not only is there a lack of heuristic techniques
that help to automate proofs about loops in Java, but due to the complexity
of loop rules in imperative languages [BSS05] user interaction involves a high
amount of technical knowledge and is extremely expensive.

55
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A recent divide-and-conquer technique for decomposition of induction proofs
[OW05] works for imperative programs, but it is targeted at simplifying user
interaction rather than eliminating it. In order to deal automatically with loops
in verification of Java-like languages there are not many options at present:
abstraction [Hol02] and approximation [FLL+02] are incomplete and in some
scenarios even unsound. They impose also limits on what can be expressed in
specifications. If the number of loop iterations is known and small then it is
possible to use symbolic execution with finite unwinding [HM05]. The state
of the art in Java verification is, however, that complex user interaction is
unavoidable for almost all loops [Bre06].

In this paper we present an automatic deductive verification technique that is
applicable to many loops occurring in practically relevant Java programs. Like
any automatic method it cannot handle all loops, but it is seamlessly integrated
with a complete interactive verification system. In addition, it computes useful
information even when it fails. To make things concrete, we look at an example
(where e(i) is an expression with an occurrence of i):

for ( int i = 0; i < a.length; i++) a[i] = e(i);

The effect of this piece of code is simply to initialize all elements of the array a

with the expression e(i) at index i. Since the length of a is in general unknown,
it is not possible to deal with this loop by finite unwinding. An abstraction of
this program has difficulties to record that the value a.length depends on a.
On the other hand, in most cases it is overkill to use induction on such a simple
problem. In order to describe the effect of such loops it is usually sufficient to
be able to quantify universally over state update expressions that are performed
in parallel. From a proof theoretic point of view, quantified state modifiers can
be handled by skolemization and simplification [R0̈6], hence, they are amenable
to automated proof search.

In general, the initialization, guard and step expressions, as well as the loop
body could be more complicated than in the example above. We are looking
for a technique that does not rely on the target program being in a particular
syntactic form. Of course, we need to make certain assumptions to ensure
that the effect of a loop is expressable as a quantified update. This problem
is closely related to loop vectorization and parallelization and it is possible to
use notions developed in these fields. The main issue is to exclude certain data
dependencies. For example, in the case of e(i) ≡ a[i - 1] the code above
cannot be transformed into a quantified state update, because the updates for
each i cannot be performed in parallel.

The contribution of this paper is a deductive verification method for treating
loops1based on the ideas just sketched. Its main properties are:

Robustness The target program needs not to be in a particular syntactic form.
This is achieved by computing the accumulated effect of the expressions

1The technique is applicable both to for- and while-loops. In this presentation we concen-
trate on the former to make the presentation more concise, and because for-loops are much
more common in our application domain Java Card.
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and statements occurring in the loop by symbolic execution before check-
ing the dependencies in the loop body (Section 4 and Section 5).

Soundness There is an automatic dependence analysis that guarantees sound
applicability (Section 6).

Automation Proof theoretic treatment of the effect of loops is not by induc-
tion but by universally quantified state modification and is automatic
(Section 7).

Relevance The method applies not only to a few academic examples, but to
a substantial number of loops in realistic programs. An experimental
evaluation of a number of realistic Java Card programs confirms this
(Section 9).

In the following section, we collect a number of technical notions needed later
on. Then, in Section 3, we walk informally through the method guided by an
example. The remaining sections then give the technical details.

2 Basic Definitions

The platform for our experiments is the KeY tool [ABB+05], which features an
interactive theorem prover for formal verification of sequential Java programs.

2.1 Dynamic Logic for Java Card

In KeY the target program to be verified and its specification are both modeled
in an instance of a dynamic logic (DL) [HKT00] calculus called Java DL [Bec01].
Java DL extends other variants of DL used for theoretical investigations or
verification purposes, because it handles such phenomena as side effects, aliasing,
object types, exceptions, and finite integer types. Java DL axiomatizes full
Java minus multi-threading, floating point types, and dynamic class loading.

Deduction in the Java DL calculus is based on symbolic program execution
and simple program transformations and so is close to a programmer’s under-
standing of Java. It can be seen as a modal logic with a modality 〈p〉 for every
program p, where 〈p〉 refers to the final state (if p terminates normally) that is
reached after executing p.

The program formula 〈p〉φ expresses that the program p terminates in a state
in which φ holds without throwing an exception. A formula φ → 〈p〉ψ is valid
if for every state S satisfying precondition φ a run of the program p starting in S
terminates normally, and in the terminating state the postcondition ψ holds.

The programs in Java DL formulas are basically executable Java code.
Each rule of the Java DL calculus specifies how to execute symbolically one
particular statement, possibly with additional restrictions. When a loop or
a recursive method call is encountered, it is in general necessary to perform
induction over a suitable data structure. In this paper we show how induction
can be avoided in the case of parallelizable loops.
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2.2 State Updates

In Java (as in other object-oriented programming languages), different object
type variables may refer to the same object. This phenomenon, called aliasing,
causes difficulties for handling of assignments in a calculus for Java DL. For
example, whether or not the formula o1.f

.
= 1 holds after (symbolic) execution

of the assignment o2.f = 2;, depends on whether o1 and o2 refer to the same
object. Therefore, Java assignments cannot be symbolically executed by syn-
tactic substitution. In the Java DL calculus a different solution is used, based
on the notion of (state) updates.

Definition 1. Atomic updates are of the form loc := val, where val is a logical
term without side effects and loc is either (i) a program variable v, or (ii) a
field access o.f, or (iii) an array access a[i]. Updates may appear in front of
any formula, where they are surrounded by curly brackets for easy parsing. The
semantics of {loc := val}φ is the same as that of 〈loc=val;〉φ.

Definition 2. General updates are defined inductively based on atomic up-
dates. If U and U ′ are updates then so are: (i) U ,U ′ (parallel composition),
(ii) U ;U ′ (sequential composition), (iii) \if (b) {U}, where b is a quantifier-free
formula (conditional execution), (iv) \for T s; U(s), where s is a variable over a
well-ordered type T and U(s) is an update with occurrences of s (quantification).

The semantics of sequential and conditional updates is obvious; the meaning
of a parallel update is the simultaneous application of all its constituent updates
except when two left hand sides refer to the same location: in this case the
syntactically later update wins. This models natural program execution flow.
The semantics of \for T s; U(s) is the parallel execution of all updates in
⋃

x∈T{s :=x;U(s)}. As for parallel updates, a last-win clash-semantics is in
place: the maximal update with respect to the well-order on T and the syntactic
order within each U(s) wins.

The restriction that right-hand sides of updates must be side effect-free is not
essential: by introducing fresh local variables and symbolic execution of complex
expressions the Java DL calculus rules normalize arbitrary assignments so that
they meet the restrictions of updates. A full formal treatment of updates is in
[R0̈6].

3 Outline of the Approach

Let us look at the following example:

for ( int i = 1; i < a.length; i++)

i f (c != 0) a[i] = b[i+1];

e lse a[i] = b[i-1];

In a first step the loop initialization expression is transformed out of the loop and
symbolically executed. The reason is that the initialization expression might
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be complex and have side effects. This results in a state S = {i := 1}. The
remaining loop now has the form: for (; i < a.length; i++)...

We proceed to symbolically execute the loop body, the step expression and
the guard for a generic value of i. In order to do this correctly, we must eliminate
from the current state all locations that can potentially be modified in the body,
step, or guard. In Section 4 we describe an algorithm that approximates such
a set of locations rather precisely. Applied to the present example we obtain i

and a[i] as modifiable locations. Consequently, generic execution of the loop
body, step, and guard starts in the empty state. Note that the set of modifiable
locations does not include, for example, c. This is important, because if S
contains, say, c := 1, we would start the execution in the state {c := 1} and the
resulting state would be much simplified.

In our example, symbolic execution of one loop iteration starting in the
empty state gives S ′ = {i := i + 1, \if (c 6

.
= 0) {a[i] := b[i+1]}, \if (c

.
=

0) {a[i] := b[i-1]}}, where the step and guard expressions were executed as
well.

The next step is to check whether the state update S ′ resulting from the
execution of the generic iteration contains dependencies that make it impossible
to represent the effect of the loop as a quantified update. For S ′ this is the case if
and only if c is 0 and a and b are the same array. In this case, the body amounts
to the statement a[i] = a[i-1] which contains a data dependence that cannot
be parallelized. All other dependencies can be captured by parallel execution of
updates with last-win clash-semantics. The details of the dependence analysis
are explained in Section 6. In the example it results in a logical constraint
C that, among other things, contains the disjunction of c 6

.
= 0 and a 6

.
= b. A

further logical constraint D strengthening C is computed which, in addition,
ensures that the loop terminates normally. In the example, normal termination
is ensured by a and b not being null and b having enough elements, that is,
b.length > a.length.

At this point the proof is split into two cases using cut formula D. Under
the assumption D the loop can be transformed into a quantified update. If D is
not provable, then the loop must be also tackled with a conventional induction
rule, but one may use the additional assumption ¬D, which may well simplify
the proof.

For the sake of illustration assume now S and S ′ both contain {c := 1} and
the termination constraint in D holds. In this case, we can additionally simplify
S ′ to {c := 1, i := i + 1, a[i] := b[i+1]}.

In the final step we synthesize from (i) the initial state S, (ii) the effect
of a generic execution of an iteration S ′ and (iii) the guard, a state update,
where the loop variable i is universally quantified. The details are explained in
Section 7. The result for the example is:

\for int I ; {i := I ; \if (i ≥ 1∧i < a.length) {c := 1, i := i+1, a[i] := b[i+1]}}

The for-expression is a universal first order quantifier whose scope is an update
that contains occurrences of the variable i (see Def. 2 and [R0̈6]). Subexpres-
sions are first order terms that are simplified eagerly while symbolic execution
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proceeds. First order quantifier elimination rules based on skolemization and
instantiation are applicable, for example, for any positive value j such that
j < a.length we obtain immediately the update a[j] := b[j+1] by instantia-
tion. Proof search is performed by the usual first order strategies without user
interaction.

4 Computing state modifications

In this section we describe how we compute the state modifications performed
by a generic loop iteration. As a preliminary step we move the initialization
out of the loop and execute it symbolically, because the initialization expression
may contain side-effects. We are left with a loop consisting of a guard, a step
expression and a body:

for (; guard; step ) body (1)

We want to compute the state modifications performed by a generic iteration
of the loop. A single loop iteration consists of executing the body, evaluating
the step expression, and testing the guard expression. This behavior is captured
in the following compound statement where dummy is needed, because Java ex-
pressions are not statements.

body ; step ; boolean dummy = guard; (2)

We proceed to symbolically execute the compound statement (2) for a generic
value of the loop variable. This is quite similar to computing the strongest post
condition of a given program. Platzer [Pla04] has worked out the details of how
to compute the strongest post condition in the specific Java program logic that
we use and our methods are based on the same principles.

Let p be the code in (2). The main idea is to try to prove validity of the
program formula S〈p〉 fin, where fin is an arbitrary but unspecified non-rigid
predicate that signifies when to stop symbolic execution. Symbolic execution
of p starting in state S eventually yields a proof tree whose open leaves are of
the form Γ → U fin for some update expression U . The predicate fin cannot be
shown to be true or false in the program logic. Therefore, after all instructions in
p have been executed, symbolic execution is stuck. At this stage we extract two
vectors ~Γ and ~U consisting of corresponding Γ and U from all open leaf nodes.
Different leaves correspond to different computation branches in the loop body.

Example 1. Consider the following statement p:

i f (i > 2) a[i] = 0 e lse a[i] = 1; i = i + 1;

After the attempt to prove 〈p〉 fin becomes stuck there are two open leaves:

V ∧ i > 2 → {a[i] := 0, i := i + 1}fin
V ∧ i 6> 2 → {a[i] := 1, i := i + 1}fin
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where V stands for ¬(a = null) ∧ i ≥ 0 ∧ i < a.length. From these we extract
the following vectors:

~Γ ≡ 〈V ∧ i > 2, V ∧ i 6> 2〉
~U ≡ 〈{a[i] := 0, i := i + 1}, {a[i] := 1, i := i + 1}〉

�

If the loop iteration throws an exception, abruptly terminates the loop, or when
the automatic strategies are not strong enough to execute all instructions in p

to completion, some open leaf will contain unhandled instructions and be of a
form different from Γ → U fin. We call these failed leaves in contrast to leaves
of the form Γ → U fin that are called successful.

If a failed leaf can be reached from the initial state, our method cannot
handle the loop. We must, therefore, make sure that our method is only applied
to loops for which we have proven that no failed leaf can be reached. In order to
do this we create a vector ~F consisting of the Γ extracted from all failed leaves
and let the negation of ~F become a condition that needs to be proven when
applying our method.

Example 2. In Example 1 only the successful leaves are shown. When the
proof attempt becomes stuck, there are in addition failed leaves of following
form:

a
.
= null → . . . fin

a 6
.
= null ∧ i < 0 → . . . fin

a 6
.
= null ∧ i 6< a.length → . . . fin

From these we extract the following vector:

~F ≡ 〈a
.
= null, a 6

.
= null ∧ i < 0, a 6

.
= null ∧ i 6< a.length〉

�

Note that symbolic execution discards any code that cannot be reached. As a
consequence, an exception that occurs at a code location that cannot be reached
from the initial state will not occur in the leaves of the proof tree. This means
that our method is not restricted to code that cannot throw any exception,
which would be very restrictive.

So far we said nothing about the state in which we start a generic loop
iteration. Choosing a suitable state requires some care, as the following example
shows.

Example 3. Consider the following code:

c = 1;

i = 0;

for (; i < a.length; i++) {

i f (c != 0) a[i] = 0;

b[i] = 0; }



62 Tobias Gedell and Reiner Hähnle

At the beginning of the loop we are in state S = {c := 1, i := 0}. It is tempting,
but wrong, to start the generic loop iteration in this state. The reason is that
i has a specific value, so one iteration would yield {a[0] := 0, b[0] := 0, i := 1},
which is the result after the first iteration, not a generic one. The problem is
that S contains information that is not invariant during the loop. Starting the
loop iteration in the empty state is sound, but suboptimal. In the example,
we get {\if (c 6

.
= 0) {a[i] := 0}, b[i] := 0, i := i + 1}, which is unnecessarily

imprecise, since we know that c is equal to 1 during the entire execution of the
loop. �

We want to use as much information as possible from the state Sinit at the
beginning of the loop and only remove those parts that are not invariant dur-
ing all iterations of the loop. Executing the loop in the largest possible state
corresponds to performing dead code elimination. When we reach a loop of the
form (1) in state Sinit we proceed as follows:

1. Execute boolean dummy = guard; in state Sinit and obtain S. We need to
evaluate the guard since it may have side effects. Evaluation of the guard
might cause the proof to branch, in which case we apply the following
steps to each branch. If our method cannot be applied to at least one
of the branches we backtrack to state Sinit and use the standard rules to
prove the loop.

2. Compute the vectors ~Γ, ~U and ~F from (2) starting in state S.

3. Obtain S ′ by removing from S all those locations that are modified in a
successful leaf, more formally: S ′ = {(` := e) ∈ S | ` 6∈ mod(~U)}, where

mod(~U) is the set of locations whose value in ~U differs from its value in S.

4. If S = S ′ then stop; otherwise let S become S ′ and goto step 2.

The algorithm terminates since the number of locations that can be removed
from the initial state is bound both by the textual size of the loop2and, in case
the state does not contain any quantified update, the size of the state itself. The
final state of this algorithm is a greatest fixpoint containing as much information
as possible from the initial state S. Let us call this final state Siter.

Example 4. Example 3 yields the following sequence of states:

Round Start state State modifications New state Remark
1 {c := 1, i := 0} {a[0] := 0, b[0] := 0, i := 1} {c := 1}
2 {c := 1} {a[i] := 0, b[i] := 0, i := i+1} {c := 1} Fixpoint

�

Computing the set mod(~U) can be difficult. Assume S contains a[c] := 0

and ~U contains a[i] := 1. If i and c can have the same value then a[c] should

2Including the size of any method called by the loop.
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be removed from S, otherwise it is safe to keep it. In general it is undecidable
whether two variables can assume the same value. One can use a simplified ver-
sion of the dependence analysis described in Section 6 (modified to yield always
a boolean answer) to obtain an approximation of location collision. The depen-
dence analysis always terminates so this does not change the overall termination
behavior.

A similar situation occurs when S contains a.f := 0 and ~U contains b.f := 1.
If a and b are references to the same object then a.f must be removed from the
new state. Here we make a safe approximation and remove a.f unless we can
show that a and b refer to different objects.

5 Loop Variable and Loop Range

For the dependence analysis and also later for creating the quantified state
update we need to identify the loop variable and the loop range. In addition,
we need to know the value that the loop variable has in each iteration of the
loop, that is, the function from the iteration number to the value of the loop
variable in that iteration. This is a hard problem in general, but whenever
the loop variable is incremented or decremented with a constant value in each
iteration, it is easy to construct this function. At present we impose this as
a restriction: the update of the loop variable must have the form l := l op e,
where l is the loop variable and e is invariant during loop execution. It would be
possible to let the user provide this function at the price of making the method
less automatic.

To identify the loop variable we compute a set of candidate pairs (l, e) where
l is a location that is assigned the expression e, satisfying the above restriction,
in all successful leaf nodes of the generic iteration. Formally, this set is defined
as {(l, e) |

∧

U∈~U
{l := e} ∈ U}. The loop variable is supposed to have an effect

on the loop range; therefore, we remove all those locations from the candidate
set that do not occur in the guard. If the resulting set consists of more than
one location, we arbitrarily choose a syntactically minimal one (for example, i
is regarded as smaller than a[c]).

The remaining candidates should be eliminated because they will all cause
data flow-dependence. A candidate is eliminated by transforming its expres-
sion into an expression which is not dependent on the candidate location. For
example, the candidate l, introduced by the assignment l = l + c;, can be
eliminated by transforming the assignment into l = init + I * c;, where init

is the initial value of l and I the iteration number.

Example 5. Consider the code in Example 1 which gives the following vector
~U of updates occurring in successful leaves:

~U ≡ 〈{a[i] := 0, i := i + 1}, {a[i] := 1, i := i + 1}〉

We identify the location i as the loop variable, assuming that i occurs in the
guard. �
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To determine the loop range we begin by computing the specification of the
guard in a similar way as we computed the state modifications of a generic itera-
tion in the previous section. We attempt to prove 〈boolean dummy = guard;〉 fin.
From the open leaves of the form Γ → {dummy := e, . . .}fin, we create the for-
mula GS which characterizes when the guard is true. Formally, GS is defined
as

∨

Γ∈~Γ
(Γ ∧ e

.
= true). The formula GF characterizes when the guard is not

successfully evaluated. We let GF be the disjunction of all Γ from the open
leaves that are not of the form above.

Example 6. Consider the following guard g = i < a.length. When the at-
tempt to prove 〈boolean dummy = g;〉 fin becomes stuck there are two successful
leaves:

a 6
.
= null ∧ i < a.length → {dummy := true}fin

a 6
.
= null ∧ i 6< a.length → {dummy := false}fin

From these we extract the following formula GS (before simplification):

(a 6
.
= null ∧ i < a.length ∧ true

.
= true) ∨

(a 6
.
= null ∧ i 6< a.length ∧ false

.
= true)

When the attempt gets stuck, there is also the failed leaf a
.
= null → . . . fin.

From it we extract the following formula GF ≡ a
.
= null. �

After having computed the specification of the guard and identified the loop
variable we determine the initial value start of the loop variable from the initial
state Sinit. If an initial value cannot be found we let it be unknown. We try to
determine the final value end of the loop variable from the successful leaves of
the guard specification. Currently, we restrict this to guards of the form l op e.
When we cannot determine the final value, we let it be unknown. We already
have determined the step value during identification of the loop variable.

The formula GR characterizes when the value of the loop variable i is within
the loop range. It is defined as GS ∧ \exists int k; i

.
= start + k ∗ step.

It is important that the loop terminates, otherwise, our method is unsound.
We create a termination constraint GT that needs to be proven when applying
our method. The termination constraint says that the step is not equal to zero
and there exists a value for the loop variable, a multiple of the step from the
initial value, for which the guard formula is false. The constraint GT is defined
as:

step 6
.
= 0 ∧ \exists int I ;¬{i := start + I ∗ step}GS

6 Dependence Analysis

Transforming a loop into a quantified state update is only possible when the
iterations of the loop are independent of each other. Two loop iterations are
independent of each other if the execution of one iteration does not affect the ex-
ecution of the other. According to this definition, the loop variable clearly causes
independence, because each iteration both reads its current value and updates
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it. We will, however, handle the loop variable by quantification. Therefore,
it is removed from the update before the dependence analysis is begun. The
problem of loop dependencies was intensely studied in loop vectorization and
parallelization for program optimization on parallel architectures. Some of our
concepts are based on results in this field [BCKT79, Wol89].

6.1 Classification of Dependencies

In our setting we encounter three different kinds of dependence; data flow-
dependence, data anti-dependence, and data output-dependence.

Example 7. It is tempting to assume that it is sufficient for independence of
loop iterations that the final state after executing a loop is independent of the
order of execution, but the following example shows this to be wrong:

for ( int i = 0, sum = 0; i < a.length; i++) sum += a[i];

The loop computes the sum of all elements in a which is independent of the
order of execution, however, running all iterations in parallel gives the wrong
result, because reading and writing of sum collide. �

Definition 3. Let SJ be the final state after executing a generic loop iteration
over variable i during which it has value J and let < be the order on the type
of i.

There is a data input-dependence between iterations K 6= L iff SK writes to
a location (ie, appears on the left-hand side of an update) that is read (appears
on the right hand side or in a guard of an update) in SL. We speak of data
flow-dependence when K < L and of data anti-dependence, when K > L. There
is data output-dependence between iterations K 6= L iff SK writes to a location
that is overwritten in SL.

Example 8. When executing the second iteration of the following loop, the
location a[1] which was modified by the first iteration is read, showing that
there is a data flow-dependence:

for ( int i = 1; i < a.length; i++) a[i] = a[i - 1];

The following loop exhibits data output-dependence:

for ( int i = 1; i < a.length; i++) last = a[i];

Each iteration assigns a new value to last. When the loop terminates, last has
the value assigned to it by the last iteration. �

Loops with data flow-dependencies cannot be parallelized, because each itera-
tion must wait for a preceding one to finish before it can perform its computa-
tion.

In the presence of data anti-dependence swapping two iterations is unsound,
but parallel execution is possible provided that the generic iteration acts on
the original state before loop execution begins. In our translation of loops into
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quantified state updates in Section 7 below, this is ensured by simultaneous
execution of all updates. Thus, we can handle loops that exhibit data anti-
dependence. The final state of such loops depends on the order of execution, so
independence of the order of executions is not only insufficient (Example 7) but
even unnecessary for parallelization.

Even loops with data output-dependence can be parallelized by assigning an
ordinal to each iteration. An iteration that wants to write to a location first
ensures that no iteration with higher ordinal has already written to it. This
requires a total order on the iterations. As we know the step expression of the
loop variable, this order can easily be constructed. The order is used in the
quantified state update together with a last-win clash-semantics to obtain the
desired behavior.

6.2 Comparison to Traditional Dependence Analysis

Our dependence analysis is different from most existing analyses for loop par-
allelization in compilers [BCKT79, Wol89]. The major difference is that these
analyses must not be expensive in terms of computation time, because the user
waits for the compiler to finish. Traditionally, precision is traded off for cost.
Here we use dependence information to avoid using induction which comes with
an extremely high cost, because it typically requires user interaction. In conse-
quence, we strive to make the dependence analysis as precise as possible as long
as it is still fully automatic. In particular, our analysis can afford to try several
algorithms that work well for different classes of loops.

A second difference to traditional dependence analysis is that we do not
require a definite answer. When used during compilation to a parallel architec-
ture, a dependence analysis must give a Boolean answer as to whether a given
loop is parallelizable or not. In our setting it is useful to know that a loop is
parallelizable relative to satisfaction of a symbolic constraint. Then we can let
a theorem prover validate or refute this constraint, which typically is a much
easier problem than proving the original loop.

6.3 Implementation

Our dependence analysis consists of two parts. The first part analyzes the loop
and symbolically computes a constraint that characterizes when the loop is free
of dependencies. The advantage of the constraint-based approach is that we can
avoid to deal with a number of very hard problems such as aliasing: for example,
locations a[i] and b[i] are the same iff a and b are references to the same array,
which can be difficult to determine. Our analysis side-steps the aliasing problem
simply by generating a constraint saying that if a is not the same array as b

then there is no dependence. The second part of the dependence analysis is
a tailor-made theorem prover that simplifies the integer equations occurring in
the resulting constraints as much as possible.

The computation of the dependence constraints uses the vectors ~Γ and ~U
that represent successful leaves in the symbolic execution of the loop body and
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were obtained as the result of a generic loop iteration in Section 4. Let Γk and
Uk be the precondition, respectively, the resulting update in the k-th leaf. If
the preconditions of two leaves are true for different values in the loop range
we need to ensure that the updates of the leaves are independent of each other
(Def. 3). Formally, if there exist two distinct values K and L in the loop range
and (possibly identical) leaves r and s, for which {i :=K}Γr and {i :=L}Γs are
true, then we need to ensure independence of Ur and Us. We run our dependence
analysis on Ur and Us to compute the dependence constraint Cr,s.

We do this for all pairs of leaves and define the dependence constraint for
the entire loop as follows where GR is the loop range predicate:

C ≡
∧

r,s

((

∃K,L.

(

K 6
.
= L ∧ {i :=K}GR ∧ {i :=L}GR ∧

{i :=K}Γr ∧ {i :=L}Γs

))

→ Cr,s

)

Example 9. Consider the following loop that reverses the elements of the array
a:

int half = a.length / 2 - 1;

for ( int i = 0; i <= half; i++) {

int tmp = a[i];

a[i] = a[a.length - 1 - i];

a[a.length - 1 - i] = tmp; }

When running the dependence analysis we get the following constraint:

C0,0 ≡ a.length < 2 ∨ half ∗ 2 < a.length

For this loop, the state Siter contains half := a.length / 2 - 1 and the con-
straint is, therefore, simplified to a.length < 2 ∨ (a.length/2)∗2 < a.length+2.
This is simplified to true which makes C true and means that the loop does not
contain any dependencies that cannot be handled by our method. �

7 Constructing the State Update

If we can show that the iterations of a loop are independent of each other (that
is, the constraint C defined in the previous section holds), we can capture all
state modifications of the loop in a state update (Def. 2). Concretely, we use
the following quantified update (T is the type of the loop variable i; GR, Γr,
Ur were defined in Sections 4 and 5):

Uloop ≡ \for T I ; {i := I ; \if (GR) {
⋃

r

\if (Γr) {Ur}}} (3)

The conditional update inside (3) corresponds to one loop iteration, where i has
the value I . In each state only one Γ can be true so we do not need to ensure
any particular order of the updates ~U .

The guard GR ensures that i is within the loop range. We must take care
when using last-win clash-semantics to handle data output-dependence. When
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the step is positive, the iteration with the highest value of the loop variable
should have priority over all other iterations. This is ensured by the standard
well-order on the Java integer types.

A complication arises when the step is negative. Then we need to reverse
the order so that the iteration with the lowest value of the loop variable has
priority. Since each type has a fixed order we need to change the state update
instead: it is sufficient to replace in (3) the update i := I with i := − I .

8 Using the Analysis in a Correctness Proof

When we encounter a loop during symbolic execution we analyze it for par-
allelizability as described above and compute the dependence constraint. We
replace the loop by (3) if no failed leaves for the iteration statement or the
guard expression can be reached (see Section 4), the loop terminates (formula
GT , see Section 5), and the dependence constraint C in Section 6.3 is valid.
Taken together, this yields:

D ≡ (
∧

i

¬(∃I.Fi[I ])) ∧ ¬(∃I.GF [I ]) ∧GT ∧ C

If D does not hold, we fall back to the standard rules to verify the loop
(usually induction). In many cases it is not trivial to immediately validate or
refute D. Then we perform a cut on D in the proof and replace the loop by
the quantified state update Uloop (3) in the proof branch where D is assumed
to hold. The general outline of a proof using a cut on D is as follows:

If not Γ ⇒ D,
use standard induction

Γ ⇒ U〈for ... ; ...〉φ,D

Γ, D ⇒ UUloop〈...〉φ

Γ, D ⇒ U〈for ... ; ...〉φ

Γ ⇒ U〈for ... ; ...〉φ
cut

...

If we can validate or refute D we can close one of the two branches. Typically,
this involves to show that there is no aliasing between the variables occurring
in the dependence constraint. Even when it is not possible to prove or to refute
D our analysis is useful, because D in succedent of the left branch can make it
easier to close.

9 Evaluation

We evaluated our method with three representative Java Card programs [Mos05]:
DeMoney, SafeApplet and IButtonAPI that together consist of ca. 2200 lines of
code (not counting comments). In these programs there exist 17 loops. Out
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of these, five can be handled (sometimes, a simple code transformation like v

+= e to v = v0 + i * e is required). Additionally, four loops can be handled
if we allow object creation in the quantified updates (which is currently not
realized). The remaining eight loops cannot be handled because they contain
abrupt termination and irregular step functions. The results are summarized in
the following table:

DeMoney SafeApplet IButtonAPI Total

LoC 1633 514 102 2249
Size (kB) 182 22 3 207

# loops 10 6 1 17

handled 4 0 1 5
with ext. 3 1 0 4
remaining 3 5 0 8

All loops in the row “handled” are detected automatically as parallelizable and
are transformed into quantified updates.

The evaluation shows that a considerable number of loops in realistic legacy
programs can be formally verified without resorting to interactive and, there-
fore, expensive techniques such as induction. Interestingly, the percentage of
loops that can be handled differs drastically among the three programs. A
closer inspection reveals that the reason is not that, for example, all the loops
in SafeApplet are inherently not parallelizable. Some of them could be rewrit-
ten so that they become parallelizable. This suggests to develop programming
guidelines (just as they exist for compilation on parallel architectures) that en-
sure parallelizability of loops.

10 Conclusion

We presented a method for formal verification of loops that works by transform-
ing loops into automizable first order constructs (quantified updates) instead of
interactive methods such as invariants or induction. The approach is restricted
to loops that can be parallelized, but an analysis of representative programs
from the Java Card domain shows that such loops occur frequently. For ex-
ample, most initialization and array copy methods are based on parallelizable
loops.

The method relies on the capability to represent state change information
effecting from symbolic execution of imperative programs explicitly in the form
of syntactic updates [Bec01, R0̈6]. With the help of updates the effect of a
generic loop iteration is represented so that it can be analyzed for the pres-
ence of data dependencies. Ideas for the dependency analysis are taken from
compiler optimization for parallel architectures, but the analysis is not merely
static. Loops that are found to be parallelizable are transformed into first order
quantified updates to be passed on to an automated theorem prover.

A main advantage of our method is its robustness in the presence of syntac-
tic variability in the target programs. This is achieved by performing symbolic
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execution before doing the dependence analysis. The method is also fully auto-
matic whenever it is applicable and gives useful results in the form of symbolic
constraints even if it fails.

Future Work The analysis can be improved in various ways. One example is
the function from iteration number to value of the loop variable (see Section 5).
In addition, straightforward automatic program transformations that reduce the
amount of dependencies (for example, v += e; into v = vInit + i * e;) could
be derived by looking at the updates from a generic loop iteration. We also
intend to develop general programming guidelines that ensure parallelizability
of loops. Recent work on automatic termination analysis [CPR06] could be
adapted to the present setting for proving the termination constraint in Sec-
tion 5.

Critical dependencies exhibited during the analysis are likely to cause prob-
lems as well in a proof attempt based on invariants or induction, so one could
try to use the obtained information on dependencies to guide the generalization
of loop invariants.

At the moment we observe Java integer semantics only by checking for
overflow. The integer model could be made more precise by computing all
integer operators modulo the the size of the underlying integer type. This
would require changes in the dependence analysis; the Java DL calculus covers
full Java integer semantic already [BS04].

Finally, the discussion in this paper stops after a loop has been transformed
into a quantified update. So far, our theorem prover has limited capabilities
for automatic reasoning over first order quantified updates. Since quantified
updates occur in many other scenarios it is worth to spend more effort on that
front.
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