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Abstract

This thesis is about methods for establishing semantic properties of programs
and how those methods can be strengthened. Finding (semi-)algorithms for
deciding semantic properties is a non-trivial task and such algorithms will, by
necessity, give approximate answers. This means that for any property of inter-
est, there is a spectrum of algorithms computing answers to various degrees of
precision, ranging from computationally cheap, low-precision algorithms to ex-
pensive, potentially non-terminating algorithms with very high precision. Find-
ing approximations precise enough to be useful, and that at the same time make
the algorithms cheap enough, is a real challenge.

In this thesis we consider program analysis and program verification, which
are two approaches for establishing program properties with contrasting require-
ments regarding precision and cost. Common to these two approaches is the
desire to move closer to the middle of the spectrum of algorithms. For algorithms
formulated as program analyses, this means increasing their precision, and for
algorithms formulated as program verifiers, it means making them terminate
without user interaction for a larger set of programs.

The work presented in this thesis can be divided into three parts. The first
part investigates the impact a number of features have on the precision of a
type-based program analysis for Haskell. The results presented, make it easier
for a designer of a type-based program analysis to choose what features to add
to the analysis in order to get sufficiently high precision.

The second part concerns how program verification can be integrated with
program analysis in order to make the verification cheaper and more automatic.
We show how a program analysis can be embedded in the tactic language of a
theorem prover to allow for a close integration of program analysis and verifi-
cation. We also show, in particular, how a dependence analysis can be used in
a theorem prover for Java to make the handling of loops more automatic.

The third part concerns how type-based program analysis can be strength-
ened by plugging in additional, externally computed information. We do this by
presenting a modular method for parameterizing type-based program analyses
over information about the analyzed program’s execution. The parameterization
is done in such a way that a modular proof of correctness is obtained, remov-
ing the need to prove correctness of each instantiation separately. We also show
how our method of parameterization can be used to allow for flow-sensitive heap
types by plugging in alias information.
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Chapter 1

Introduction

This thesis is about methods for establishing semantic properties of programs
and how those methods can be strengthened. Examples of typical semantic
properties are: Will a variable be used more than once during execution? Will
two variables point to the same object in the heap? Will secret information
stored in one variable be leaked to another?

Finding algorithms1 for deciding this kind of properties is non-trivial and is
the subject of a large body of research including this thesis. As a consequence
of Rice’s theorem [Ric53], which states that any formal system that is strong
enough to capture a significant amount of the analyzed program’s semantics
will be undecidable, there are no terminating algorithms for deciding non-trivial
properties. This means that if we want to have a terminating algorithm it will
by necessity decide an approximation of the sought after property. Depending
on what the algorithm is used for, there might also, besides termination, be
constraints on the computational complexity of the algorithm. Imagine, for
example, an algorithm that is used by a compiler to guide some optimizing
transformations. Since users do not want to wait long for a compiler to finish, it
is in this case more important that the algorithm terminates quickly than that
it computes a very precise result. To fulfill these constraints the algorithm will
need to approximate parts of the analyzed program’s semantics.

Approximation can also be useful for non-terminating algorithms. Although
they are not guaranteed to terminate for all programs, there is typically a set
of programs for which they do terminate. By making the algorithms more
approximate, this set of programs can be made larger.

This means that for any property of interest, there is a spectrum of algo-
rithms, computing answers to various degrees of precision, ranging from com-
putationally cheap, terminating algorithms with low precision to expensive, po-
tentially non-terminating algorithms with very high precision. The spectrum of
algorithms is illustrated in Figure 1.

1In this thesis, algorithms refers to both algorithms guaranteed to terminate and non-
terminating semi-algorithms.
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s s

� -
low precision
cheap

high precision
expensive

terminating non-terminating

Figure 1: Spectrum of Algorithms

This is what makes this area of research so interesting. For a given property
there is no such thing as the ”best” approximation, it all comes down to tradeoffs
between precision and cost, based on what the algorithm will be used for.

Two approaches for establishing properties with contrasting requirements
regarding precision and cost are program analysis and program verification.

Program analysis [NNH99] is located on the left-hand side of the spectrum
and consists of automatic and computationally cheap algorithms that terminate
for all programs. Their prime usage is in situations where runtime is a major
factor or where only limited resources are available. Typical examples include
guiding optimizations in compilers and giving warnings about possible errors
in programs. In these cases, missing an optimization or erroneously report an
error can be tolerated. A missed optimization will only result in the compiled
program running a little bit slower than best possible and a spurious warning
can be inspected by the programmer and be ignored. None of which comes at
a particular high cost.

Program verification by deduction based on logic and theorem proving [RV01,
BHS07], is located on the right-hand side of the spectrum where precision is more
important than complexity and termination. It is often used in situations where
it is more costly to modify the program being verified than allowing the veri-
fication process more time and resources. A typical example of this is proving
correctness of safety-critical programs. If a program is erroneously labeled as
being incorrect it might be very costly to rewrite it and the rewritten program
might still be erroneously labeled, forcing further rewrites. In this situations it
can be cheaper to establish the property by proving it using a theorem prover
and let a trained user interact with the proof creation. The chance of this
succeeding is considerably higher given that the user probably has knowledge
about the program which could not easily be discovered by a program analysis.
Also, if the proof creation would fail, the user would have detailed information
about what went wrong and would be able to more easily change the program
accordingly.

When designing a program analysis for a particular semantic property the
aim is typically to make it as precise as possible while keeping it tractable. In
order to do so it has to be decided what parts of the program semantics should
be abstracted and to what degree. For program analyses formulated as type
systems, so called type-based program analyses [Pie02], there are a number of
common features that are orthogonal to each other and each affect the level of
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approximation and, thus, the precision of the analyses. Examples of such fea-
tures are polymorphism, subtyping, annotation of datatypes and whole program
analysis. It has, however, been unclear exactly how these features interact with
each other and what impact they have on the precision. Simply adding all fea-
tures will raise the precision but probably render the analysis too expensive for
most uses. This is the subject of Paper I of this thesis in which we investigate
what impact the above features have on the precision of a particular type-based
program analysis, usage analysis [LGH+92]. The results of this paper make it
easier for a designer of a type-based program analysis to decide what features
are likely to have the largest impact on the precision and should be included.

Common to both program analysis and program verification is the desire
to move closer to the middle of the spectrum of algorithms. For algorithms
formulated as program analyses, this means increasing their precision, and for
algorithms formulated as program verifiers, it means making them terminate
without user interaction for a larger set of programs. One way to do that is by
combining them with already existing program analyses. Consider for example
a theorem prover used to prove some property of a program. It might well be
the case that at some point, the theorem prover will require the user to assist
with choosing how to proceed with the creation of the proof. If a cheap program
analysis could figure out which choice to make, the need for user interaction,
which is associated with a high cost, could be reduced. How this can be done is
investigated in Paper II and Paper III of this thesis. In Paper II we show how
a particular program analysis, reaching definitions analysis [NNH99], can be
embedded in the tactic language of a theorem prover for Java. This allows for
a close integration of theorem proving and program analysis and opens up for
potential new areas of application. The embedding of the particular analysis is,
however, only made as a proof of concept and the embedded analysis is not used
by the theorem prover. In Paper III we go a step further and give a concrete
example of how the theorem prover can interact with a program analysis by
showing how the handling of loops can be made more automatic by the use of
a dependence analysis [Wol89].

An important property of program analysis and program verification is cor-
rectness, i.e., that the computed results are sound approximations of the ana-
lyzed program’s semantics. In both Paper II and Paper III the goal is to show
how program analysis and program verification can be combined but correctness
is not established. This is addressed in Paper IV and Paper V.

Paper IV and Paper V of this thesis concern how type-based program anal-
yses can be strengthened by making available information computed by other
program analyses. For example, knowing if a variable contains a null-pointer
is a rather fundamental semantic property that is useful for a large number
of analyses deciding more complex properties. There are two major different
methods of strengthening a program analysis and making additional information
available: by integration and by parameterization. Briefly, integration relies on
extending the rules of the analysis to also compute the additional information
and parameterization relies on extracting the information from the result of an
external analysis.
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Integration is problematic for a number of reasons: i) It obscures the original
intention of the analysis since the rules are extended to compute additional in-
formation and, thus, grow more complex which make them harder to understand
and maintain. This is especially true if multiple external analyses are integrated.
ii) It makes usage of already available analyses difficult, since they have to be
rephrased in such a way that their rules are compatible with the rules of the
original analysis. iii) It is non-modular: changing the external analysis implies
changing the entire combined analysis. An important consequence of this is
that if the external analysis is changed then the entire proof of correctness of
the combined analysis has to be redone.

Because of this, we believe parameterization to be the better method and
address in Paper IV both the importance of keeping the original analysis and the
external analysis separated and the need to establish correctness of the result-
ing analysis. We do this by presenting a modular method for parameterizing
type-based program analyses over information about the analyzed program’s
execution. The parameterization is done in such a way that a modular proof of
correctness is obtained.

In Paper V we use our method of parameterization to show how a flow-
sensitive type-based program analysis can be made more precise by using alias
information [CC77a, Coo85]. In particular, we show how alias information
allows for floating heap types by introducing rules for structural weakening and
strong updates.

Outline The outline of this chapter is as follows. Section 1 gives an introduc-
tion to program analysis. Section 1.1 shows how type systems can be used for
program analysis and how correctness can be established, which sets the scene
for Paper IV and Paper V. Section 1.2 introduces usage analysis, subtyping and
polymorphism which are used in Paper I. In Section 2, program verification
and the particular theorem prover used in Paper II and Paper III is introduced.
Finally, Section 3 presents the papers included in this thesis in a bit more detail
and Section 4 gives an overview of my personal contributions to the included
papers.

1 Program Analysis

A central topic of this thesis is program analysis which consists of lightweight
formal methods for deciding semantic properties of programs. Examples of such
formal methods are type systems [Pie02], abstract interpretation [CC77b, CC79]
and model checking [CE82, QS82]. In this thesis we mostly consider type-
based program analysis and specifically the class of automatic and inexpensive
analyses that are often used to guide program transformations and optimizations
or establish relatively simple semantic properties. Two examples of program
analyses in this class are null-pointer analysis [NNH99], that determines what
variables in a program might contain null-pointers during execution, and alias



1. Program Analysis 5

analysis [CC77a, Coo85, CWZ90], that determines for each pair of program
locations if they could at runtime point to the same object.

An important characteristic of these two analyses, and program analyses in
general, is that they terminate and give an answer for all programs. Unfortu-
nately, virtually all interesting semantic properties are undecidable. A program
analysis must, therefore, give approximate answers in order to fulfill the termi-
nation constraint. When analyses make such approximations, it is important
that they are done in a sound way. This can be done in two ways, either by
computing an over-approximation or computing an under-approximation.

Let S be the set of reachable states for a program being analyzed. An over-
approximation overestimates the reachable states, computing a set S+, such
that S+ ⊇ S. This is useful to establish that a property holds during the
execution of the program; it is guaranteed to hold if it holds for all states in S+.
It might, however, result in false negatives, since there might be a state present
in S+ but not in S for which the property does not hold.

Under-approximations can be seen as the dual of over-approximations. They
underestimate the reachable program states, computing a subset S− ⊆ S. This
is useful to establish that a property does not hold during the execution of the
program, but might result in false positives.

Besides being sound, another important characteristic of the class of program
analyses we consider is that they are computationally cheap, i.e. that they
are not too resource or time consuming. Ideally, the complexity of a program
analysis should be close to linear, at least when analyzing real world programs2.

1.1 Type-Based Program Analysis

The program analyses considered in Paper I, Paper IV and Paper V of this
thesis are formulated as type-based program analyses, which is the topic of
this section. A type-based program analysis can be seen as an extension to a
type system that in addition to the underlying type information also computes
information about some sought after property.

In the book Types and Programming Languages [Pie02], Pierce defines type
systems in the following way: ”A type system is a tractable syntactic method
for proving the absence of certain program behaviors by classifying phrases
according to the kinds of values they compute”.

A type system classifies phrases by defining a typing relation that relates
terms of the program language with types of a type language. Typically, if a
term and a type is related by the typing relation, the type system guarantees
that the term evaluates to a value of the specific type. A typical typing relation
judgment is of the form Γ ⊢ e : τ and expresses that the program fragment e
has the type τ in the typing environment Γ.

The following example presents a type system for a language of expressions,
showing how typing relations are typically defined inductively by a set of in-

2It will almost always be possible to craft contrived example programs for which a program
analysis does not exhibit a linear complexity. This does, however, not affect its practical
usefulness.
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ference rules. This type system is later used to show how type-based program
analyses are based on type systems and also to show how correctness of type
systems can be established.

Example 1.1 (A Type System for Expressions) Let the language of ex-
pressions consist of boolean literals, ranged over by b, integer literals, ranged
over by i, variables, ranged over by x, addition, division and choice.

Expressions e ::= b | i | x | e+ e | e/e | if e then e else e

There are only two different types of values the expressions can evaluate to:
integer values and boolean values. This is reflected by the type language which
consists of only two types: the type for boolean values, bool, and the type for
integer values, int.

Types τ ::= bool | int

The typing relation is defined by the following inference rules where the typing
environment Γ is a map from variables to types.

Γ ⊢ b : bool Γ ⊢ i : int

Γ(x) = τ

Γ ⊢ x : τ

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 + e2 : int

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1/e2 : int

Γ ⊢ e : bool Γ ⊢ e1 : τ Γ ⊢ e2 : τ

Γ ⊢ if e then e1 else e2 : τ

The rules express that boolean and integer literals are well-typed with respect
to bool and int, respectively, the types of variables are given by the typing
environment, and that the result of adding or dividing two integers is of type
int. When branching over a boolean value we do not generally know what
branch will be taken. This is reflected in the rule for choice which requires both
branches to be of the same type which is also the type of the choice expression.

�

If Γ ⊢ e : τ holds for an expression e, a type τ and a typing environment Γ,
the type system guarantees that evaluation of e in an environment that conforms
to Γ will not lead to any run-time type errors, such that trying to add a boolean
value with an integer value. There are, however, run-time errors that are not
caught by the type system them stem from division; if the rightmost operand
evaluates to zero it causes a division by zero error.

One way to strengthen the type system to be able to catch these errors is by
extending it, forming a type-based program analysis that besides computing the
types of expressions also tracks whether the expressions might cause division by
zero errors.

The following example presents an extension of the type system, forming a
simple division by zero analysis. The judgments of the analysis are of the form
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Γ ⊢ e : τ, π where π ranges over the error annotations ok, expressing that the
expression will not cause an error, and error, expressing that the expression
might cause an error.

Example 1.2 (A Simple Division by Zero Analysis) In the following rules
we let ⊔ be the least upper bound using the order ok < error such that ok ⊔
error = error.

Γ ⊢ b : bool,ok Γ ⊢ i : int,ok

Γ(x) = τ

Γ ⊢ x : τ,ok

Γ ⊢ e1 : int, π1 Γ ⊢ e2 : int, π2

Γ ⊢ e1 + e2 : int, π1 ⊔ π2

Γ ⊢ e1 : int, π1 Γ ⊢ e2 : int, π2

Γ ⊢ e1/e2 : int, error

Γ ⊢ e : bool, π Γ ⊢ e1 : τ, π1 Γ ⊢ e2 : τ, π2

Γ ⊢ if e then e1 else e2 : τ, π ⊔ π1 ⊔ π2

The rules express that literal and variable expressions never cause any er-
rors. Addition and choice expressions only cause errors if any of their subex-
pressions cause errors, which is reflected in the rules by the propagation of the
error annotations. The rule for division approximates the semantic behavior
very conservatively and assumes that all divisions cause errors.

�

This very näıve way of tracking errors is much too conservative to have any
practical usage since every expression containing a division will be annotated as
possibly resulting in an error. A real analysis would need to be strengthen with
much more detailed information about, for example, what values the subexpres-
sions evaluate to, in order to be able to identify divisions where the rightmost
operand never evaluates to zero.

In Paper IV of this thesis we present a modular method for parameterizing
type systems over such information about the analyzed program’s execution. By
using our method, we can replace the above rule for division by the following
two rules, allowing for a higher precision.

Γ ⊢E,Rnz

e1 : int, π1 Γ ⊢E,Rnz

e2 : int, π2 RnzE (e2)

Γ ⊢E,Rnz

e1/e2 : int, π1 ⊔ π2

Γ ⊢E,Rnz

e1 : int, π1 Γ ⊢E,Rnz

e2 : int, π2 ¬RnzE (e2)

Γ ⊢E,Rnz

e1/e2 : int, error

The new rules are parameterized over an abstract environment E, represent-
ing all concrete environments that the division might be evaluated in during
execution, and a so-called plugin Rnz such that RnzE (e) holds if e is guaranteed
to never evaluate to zero in any of the concrete environments abstracted by E.
If the side-condition RnzE (e2) holds, it means that e2 will never evaluate to zero
and, thus, no division by zero error will occur. This is reflected in the first rule
where the error annotation of the division is the least upper bound of the error
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annotations of its subexpressions. If the side-condition does not hold, we cannot
exclude the possibility that e2 might evaluate to zero, and the type system falls
back to the original behavior and uses the second type rule which assumes that
the division will cause an error and annotates the expression with error.

Correctness Being correct is crucial for all program analyses and in contrast
to, for example, abstract interpretations, type-based program analyses have
no built-in correctness. Instead, once a type-based program analysis has been
defined, correctness has to be established separately. This is a particular focus
of Paper IV in which we consider how correctness of parameterized analyses can
be established.

One way to establish correctness of type-based program analyses, and type
systems in general, is to prove so-called progress and preservation [Pie02]. This
is done with respect to a formal semantics of the program language, which is
typically given as a small step semantics, and a well-formedness relation for
values and variable environments.

We will here establish correctness of the above defined division by zero anal-
ysis and in order to do so, we give a formal semantics for the language of
expressions.

Example 1.3 (A Semantics for Expressions) Let v range over the values
that consist of the integers, ranged over by i, and the booleans, ranged over by
b.

Values v ::= i | b

The semantics of the expressions is given in terms of a small step semantics
between configurations C with transitions of the form 〈E, e〉 → C where C is
either one of the terminal configurations ⊥ and 〈E, v〉 indicating abnormal and
normal termination respectively, or a non-terminal configuration 〈E, e〉 where
E ranges over variable environments, i.e. maps from variables to values. The
transition rules are defined as follows.

E(x) = v

〈E, x〉 → 〈E, v〉

v = v1 + v2
〈E, v1 + v2〉 → 〈E, v〉

v2 6= 0 v = v1/v2

〈E, v1/v2〉 → 〈E, v〉

v2 = 0

〈E, v1/v2〉 → ⊥

〈E, if true then e1 else e2〉 → 〈E, e1〉

〈E, if false then e1 else e2〉 → 〈E, e2〉

〈E1, e1〉 → 〈E2, e2〉

〈E1, R[e1]〉 → 〈E2, R[e2]〉

〈E, e〉 → ⊥

〈E,R[e]〉 → ⊥

As is common for small step semantics we use reduction contexts, ranged
over by R, to allow for inner reduction and propagation of errors.

R ::= · | R/e | e/R | R+ e | e+R | if R then e else e
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�

Before giving the progress and preservation lemmas we need to define what
it means for values, environments and configurations to conform to a type, i.e.
we need to define well-formedness relations. We define our well-formedness
relations as follows.

Example 1.4 (Well-formedness) The judgments of the well-formedness re-
lation for values, of the form ⊢ v : τ , express that the value v is well-formed
with respect to the type τ .

⊢ b : bool ⊢ i : int

The rules for values express that boolean and integer values are well-typed
with respect to their respective types.

The judgment of the well-formedness relation for variable environments, of
the form ⊢ E : Γ, expresses that the environment E is well-formed with respect
to the typing environment Γ.

∀x ∈ dom(Γ). ⊢ E(x) : Γ(x)

⊢ E : Γ

The rule for environments expresses that the environment must map all vari-
ables in the typing environment to values which are well-formed with respect to
the types given to them by the typing environment.

The judgments of the well-formedness relation for configurations, of the form
⊢ C : τ,Γ, π, express that the configuration C is well-formed with respect to the
type τ , the typing environment Γ and the error annotation π.

⊢ ⊥ : τ,Γ, error
⊢ v : τ

⊢ v : τ,Γ, π
⊢ E : Γ ⊢ e : τ
⊢ 〈E, e〉 : τ,Γ, π

The rules state that the abnormal terminal configuration is only well-formed
in the error annotation indicating error, a normal terminal configuration is
well-formed if the value is well-formed, and a non-terminal configuration is well-
formed if both the environment and expression are well-formed.

�

With this we are ready to give examples of progress and preservation lemmas.

Example 1.5 (Progress and Preservation) The progress lemma states that
evaluating a well-typed expression in a well-formed environment, results in a
configuration. In the definition we let e range over non-literal expressions.

Γ ⊢ e : τ, π ∧ ⊢ E : Γ =⇒ ∃C. 〈E, e〉 → C

The preservation lemma states that the result of evaluating a well-typed ex-
pression in a well-formed environment, will be well-formed.

Γ ⊢ e : τ, π ∧ ⊢ E : Γ ∧ 〈E, e〉 → C =⇒ ⊢ C : τ,Γ, π
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Together, progress and preservation state that if an expression is well-typed,
i.e. the expression is related to a specific type by the typing relation, then evalua-
tion of the expression will not fail and the result will be well-formed w.r.t. to the
specific type. This gives that the result of the analysis is a sound approximation
of the program semantics.

�

1.2 Usage Analysis

The particular type-based program analysis considered in Paper I of this thesis
is a usage analysis [LGH+92, Mar93, TWM95, Gus98, WPJ99, WPJ00, GS00,
Wan02].

Usage analysis analyzes programs written in lazy functional languages and
is best explained by describing how lazy evaluation works. The main feature of
lazy evaluation is that an expression is not evaluated before it is needed and is
only evaluated once, i.e., its value is shared by all its successive uses. Consider
the following example program.

let x = 1 + 2

y = 3 + 4

in x + x

When evaluating the program, the expressions bound to x and y will be
stored in an unevaluated form in the program memory, often referred to as the
heap. We refer to unevaluated expressions stored in the heap as closures. When
evaluating the expression x + x, we fetch the closure for x from the heap and
evaluate it. When it has been evaluated we make sure that we update (replace)
the closure with the result. In this way we make sure that when x is used
a second time, we use the already computed result stored on the heap. It is
important to note that since y was not needed to evaluate x + x, its value was
never evaluated.

Lazy evaluation allows the programmer to focus more on what should be
computed instead of in which order the computation should be done. It also
allows for a natural use of infinite structures such as infinite lists which is more
complicated in languages with strict evaluation semantics.

One inefficiency of lazy evaluation is that updating evaluated closures is not
always needed. If we change the expression in the example above to x + x + y

instead of x + x, the unnecessary overhead is revealed. When evaluating this
expression, y will only be used once which means that the time spent updating
its closure is unnecessary. Whether this is a serious problem or not depends,
of course, on how common expressions that are only used once are in typical
programs. Measurements by Marlow [Mar93] have shown that for a particular
Haskell implementation as many as 70% of all updates are unnecessary and that
these updates stand for up to 20% of the total running time of a program.

If we knew which expressions are only used once during the execution of a
program, we could use this information to avoid updating their closures, which
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would reduce the running time. Besides avoiding updates, this information can
also be used to enable a number of optimizing program transformations such as
inlining, let-floating, and full laziness [PJPS96].

The result of the usage analysis is given in the form of an annotated version
of the analyzed program. Each point in the annotated program that allocates
a closure is annotated with 1 or ω. The annotation 1 means that all closures
created at that point will at most be used once and the annotation ω means
that the closures could potentially be used more than once. The following is the
result of annotating the modified program.

let x
ω

= 1 + 2

y
1
= 3 + 4

in x + x + y

Subtyping

Two of the features investigated in Paper I are subtyping and polymorphism.
Subtyping is useful to allow for a degree of separation between the types of a
variable at its binding point and its use points.

The usage analysis associates each variable with a type annotated with usage
annotations. For the example above, x will be give the type Intω and y the type
Int1.

When typing, for example, lists and branches, all elements and subexpres-
sions must be of the same type. Consider the following example where x and y

are inserted in a list.

let x = 1 + 2

y = sq x

in [x, y]

If the variables are forced to have the same type at their binding point and
their use points, x will have the type Intω at its use point because it is used
more than once. Since x and y are elements of the same list, they are forced to
have the same type which means that the binding point of y will also have the
type Intω. This is undesirable since y is only used once and we would, therefore,
want its binding point to have the type Int1.

A solution to this problem is to add subtyping. In essence, subtyping allows
a type to be seen as a larger type whenever it is semantically safe. By using
subtyping we can give y the type Int1 and choose to see the type of x as Int1

at its use point. In this way the variables can be seen as having the same type
when inserted into the list and we do not break the constraint that all elements
of a list should have the same type. This is safe to do since a variable that is
annotated as being used more than once may safely be used as a variable that
is only used once. The opposite does, however, not hold.
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Polymorphism

Polymorphism is needed to express dependencies between usage annotations
within a type. Consider typing the identity function:

id = λx. x

What type should it be given? If we give it the type ∀α. α1 → α1 it will
not be possible to use its result more than once. We cannot give it the type
∀α. αω → αω either since it would force all expressions it is applied to, to be
annotated with ω.

We want to give it a type that reflects that the usage of its argument will be
the same as the usage of its result. This is made possible by the introduction
of usage variables, ranged over by k, which can be universally quantified. This
corresponds to adding polymorphism to the annotation language and allows us
to express the dependence by giving id the type ∀α, k. αk → αk. In Paper
I, we investigate a number of different types of annotation polymorphism and
evaluate the impact they have on the precision.

2 Program Verification

In this thesis, program verification refers to deductive verification based on
logic and theorem proving [RV01, BHS07]. In a program verifier of this type,
both the semantics of the program language and the semantic properties to be
established are expressed using a program logic. The properties are established
by constructing a proof using the calculus of the verifier.

This type of program verification is a more precise and general purpose
technique than program analysis. It is more precise because it can encode the
exact semantics of the program language in its program logic and perform the
reasoning using the logic in a less approximate way. It is more general purpose
since it can handle all properties that can be expressed in its logic, which stands
in contrast to program analyses which are, typically, tailor-made for a specific
property.

This is, however, associated with a considerable cost. Having an expres-
sive program logic means that it is impossible to find a complete calculus. A
consequence of this is that it will not be possible to establish all valid prop-
erties. It also becomes extremely hard to find good heuristics for guiding the
automatic construction of proofs. Therefore, user interaction is often required,
which makes the verification both very time consuming and expensive. It also
requires the user to have a good knowledge of how the underlying program logic
and calculus work.

Deductive program verification does often not have any termination guaran-
tee. When trying to verify an undecidable property, a program verifier will in
general be unable to prove or refute the property and, thus, never terminate. It
is also the case that since a program verifier is typically made to be very gen-
eral, it will not be optimized for any special class of semantic properties. There
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will, therefore, often be a rather large overhead when establishing properties
using the program logic instead of using program analyses tailor-made for the
particular properties.

This leaves room for improvement. A typical situation when constructing a
proof of a property is that a number of simpler properties have to be established.
For some of these, the precision is not crucial and they could well be established
by using an approximate program analysis. Examples of such properties include
null-pointer information [NNH99] and dependence information [Wol89].

In Paper II of this thesis we show how a particular program analysis, reach-
ing definitions analysis [NNH99], can be embedded in the tactic language of a
theorem prover for Java. This allows for a close integration of theorem proving
and program analysis. The embedding of the particular analysis is, however,
only made as proof of concept and the embedded analysis is not used by the
theorem prover. In Paper III we go a step further and give a concrete example
of how the theorem prover can interact with a program analysis by showing how
the handling of loops can be made more automatic by the use of a dependence
analysis.

The KeY System The program verifier used in Paper II and Paper III is the
KeY system [BHS07] which features an interactive theorem prover for formal
verification of sequential Java programs. In KeY the program to be verified
and the properties to be established are modeled in a dynamic logic called
Java DL [Bec01]. Java DL is a modal logic in which Java programs occur
as parts of formulas using modality operators. The formula 〈p〉φ expresses
that the program p terminates, without throwing any exceptions, in a state in
which φ holds. A formula φ → 〈p〉ψ is valid if for every state S, satisfying
precondition φ, a run of the program p starting in S terminates normally, and
the postcondition ψ holds in the terminating state. Deduction in the Java

DL sequent calculus is based on symbolic execution and transformation of the
programs occurring in the formulas.

The rules of the calculus, called taclets, are implemented in a domain specific
tactic language and typically consist of a guard pattern that is matched against
the sequent under consideration and an action which is performed if the taclet
is applied. In Paper II we show that this language is sufficient to be able to
implement the rules a of program analysis.
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3 Included Papers

Paper I: Polymorphism, Subtyping, Whole Program Analysis and
Accurate Data Types in Usage Analysis In this paper we study what
impact a number of features have on the precision of a full scale implementation
of a usage analysis for Haskell. The features we investigate are polymorphism,
subtyping, datatype annotation and whole program analysis.

Several researchers have speculated that these features are important but
there has been a lack of empirical evidence. Since some of the features can be
rather costly, it is important for designers of program analyses to know how
much higher precision it is reasonable to expect by adding them. The results of
this paper provide guidance to this.

In order to evaluate the features, we have implemented a range of usage
analyses with the following features:

• different degrees of polymorphism:

– constrained polymorphism with polymorphic recursion

– constrained polymorphism with monomorphic recursion

– the simple polymorphism introduced by [WPJ00]

– complete monomorphism

• with and without subtyping

• different treatments of data types

– full precision (no limit on the number of annotation variables)

– limit of 100, 10 and 1 annotation variable(s)

– no annotation variables

• as whole program analyses and as modular analyses

Our measurements show that all features increase the precision. It is, how-
ever, not necessary to have them all to obtain an acceptable precision.

This is an extended version of the paper [GGS06], published in the proceed-
ings of the Fourth ASIAN Symposium on Programming Languages and Systems
2006 (APLAS’06).

Paper II: Embedding Static Analysis into Tableaux and Sequent based
Frameworks In this paper we present a method for embedding program anal-
ysis into tableaux and sequent based frameworks. The reason for doing this is
to strengthen them by providing access to automatic program analyses.

In these frameworks, the information flows from the root node to the leaf
nodes which makes it hard to synthesize information. A major contribution of
this paper is that we show that the existence of free variables in such frameworks
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introduces a bi-directional flow, which can be used to collect and synthesize
arbitrary information.

By using this bi-directional flow of information we are able to implement
the rules of a reaching definitions analysis using the taclet language of the KeY
system. This allows for a close integration of theorem proving and program
analysis. Although the embedding of the particular analysis is only given as
proof of concept and is not used to guide the theorem prover, it opens up for
new areas of application of tableaux and sequent based theorem provers.

This is a modified version of the paper [Ged05], published in the proceedings
of the International Conference on Automated Reasoning with Analytic Tableaux
and Related Methods 2005 (TABLEAUX’05).

Paper III: Verification by Parallelization of Parametric Code In this
paper we show how interactive proof techniques, such as induction, can be re-
placed with automated first-order reasoning in order to deal with parallelizable
loops, where a loop can be parallelized whenever the loop iterations are inde-
pendent of each other.

Loops are a major bottleneck in formal software verification because they
generally require user interaction: typically, induction hypotheses or invariants
must be found or modified by hand. This involves expert knowledge of the
underlying calculus and proof engine.

This is a typical example of where a theorem prover can benefit from using
program analysis. In this paper we develop a dependence analysis that ensures
parallelizability of loops. When verifying a loop, the theorem prover runs the
dependence analysis and uses the result to guide the creation of the proof. If the
loop is found to be parallelizable, the proof continues by applying a rule that
transforms the loop into a universally quantified update of the state change
information represented by the loop body. The application of this rule is done
automatically and the creation of the proof continues without need for user
interaction. If the loop is not found to be parallelizable, the theorem prover
falls back on the original techniques. This makes it possible to use automatic
first order reasoning techniques to deal with loops.

The method has been implemented in the KeY prover and evaluated with
representative case studies from the Java Card domain.

This is a typographically modified version of the paper [GH07], published in
Algebraic and Proof-theoretic Aspects of Non-classical Logics 2007, which is an
extended version of the paper [GH06], published in the proceedings of the 13th
International Conference on Logic for Programming, Artificial Intelligence and
Reasoning 2006 (LPAR’06).
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Paper IV: Abstract Interpretation Plugins for Type Systems In this
paper we show how type-based program analyses can be strengthened by getting
additional information about the analyzed program’s execution from external
analyses. One way to make such information available is to integrate support-
ing analyses computing the information. Such integration is problematic for
a number of reasons: 1) it obscures the original intention of the type system,
especially if multiple additional analyses are added, 2) it makes use of already
available analyses difficult, since they have to be rephrased as type systems,
and 3) it is non-modular: changing the supporting analyses implies changing
the entire type system.

Using ideas from abstract interpretation we present a method for parame-
terizing type systems over the results of abstract analyses in such a way that
one modular correctness proof is obtained. This is achieved by defining a gen-
eral format for transferal and use of the information provided by the abstract
analyses. The key gain from this method is a clear separation between the cor-
rectness of the analyses and the type system, both in the implementation and
correctness proof, which allows for an easy way of changing the external analysis
and making use of precise, and hence potentially complex analyses.

We exemplify the use of the framework by presenting a parameterized type
system that uses additional information to improve the precision of exception
types in a small imperative language with arrays.

This is an extended version [GH08a] of the paper [GH08b], published in the
proceedings of the 12th International Conference on Algebraic Methodology and
Software Technology 2008 (AMAST’08).

Paper V: Plugins for Structural Weakening and Strong Updates In
this paper we use the plugin framework presented in Paper IV and present a
general way of making use of may- and must-alias information to achieve flow-
sensitive type systems that allow for flow-sensitivity on the heap.

We show how the alias information can be extracted and made available
to a type-based program analysis by the use of our plugin framework. We also
present two rules that use this information to allow for flow-sensitive heap types:
structural weakening and strong updates.

The rule for structural weakening uses may-alias information to achieve a
limited form of flow-sensitivity that allows for type changes on the heap that are
compatible with the subtype hierarchy. Basically, this rule allows us to raise the
type of a location, if we at the same type raise the type of all locations aliased
with it. This ensures that all aliases have a uniform type view.

The rule for strong updates uses a combination of may-alias and must-alias
information and allows for type changes on the heap that are not compatible
with the subtype hierarchy, resembling the typical type rule for updates of
variables in flow sensitive type systems. This allows us to more freely change
the type of locations that have no may-aliases.
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This is published as a technical report 2008 [GH08c].

4 Personal Contributions

Paper I: Polymorphism, Subtyping, Whole Program
Analysis and Accurate Data Types in Usage Analysis

I contributed to the design of the usage analyses’ handling of data types and the
specific features of the Core language. I implemented the analyses, integrated
them in GHC, modified the runtime system of GHC to compute the necessary
statistics and carried out all measurements.

Paper II: Embedding Static Analysis into Tableaux and Sequent based
Frameworks
I am the sole author of this paper.

Paper III: Verification by Parallelization of Parametric Code
This paper was written together with Reiner Hähnle. I developed most of the
technical material and also made the prototype implementation.

Paper IV: Abstract Interpretation Plugins for Type Systems
This paper was written together with Daniel Hedin. We contributed equally to
the technical material.

Paper V: Plugins for Structural Weakening and Strong Updates
This paper was written together with Daniel Hedin. We contributed equally to
the technical material.
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Polymorphism, Subtyping, Whole Program

Analysis and Accurate Data Types in Usage

Analysis

Tobias Gedell Jörgen Gustavsson Josef Svenningsson

Abstract

There are a number of choices to be made in the design of a type based
usage analysis. Some of these are: Should the analysis be monomorphic or
have some degree of polymorphism? What about subtyping? How should
the analysis deal with user defined algebraic data types? Should it be a
whole program analysis?

Several researchers have speculated that these features are important
but there has been a lack of empirical evidence. In this paper we present
a systematic evaluation of each of these features in the context of a full
scale implementation of a usage analysis for Haskell.

Our measurements show that all features increase the precision. It is,
however, not necessary to have them all to obtain an acceptable precision.

1 Introduction

In this article we study the impact of polymorphism, subtyping, whole program
analysis and accurate data types on type based usage analysis. Usage analysis
is an analysis for lazy functional languages that aims to predict whether an
argument of a function is used at most once. The information can be used to
reduce some of the costly overhead associated with call-by-need and perform
various optimizing program transformations.

Polymorphism Polymorphism is the primary mechanism for making a type
based analysis context sensitive.

Previous work by Peyton Jones and Wansbrough has indicated that polymor-
phism is important for usage analyses. Convinced that polymorphism could be
dispensed with they made a full scale implementation of a completely monomor-
phic usage analysis. However, it turned out that it was ”almost useless in
practice” [WPJ99]. They drew the conclusion that the reason was the lack of
polymorphism. In the end they implemented an improved analysis with a sim-
ple form of polymorphism that also incorporated other improvements [Wan02].
The resulting analysis gave a reasonable precision but there is no evidence that
polymorphism was the crucial feature.
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In contrast to these indications, several studies on points-to analysis for
C have shown that monomorphic analyses [FFA00b, HT01, FRD00, Das00,
DLFR01] give adequate precision for the purpose of an optimizing compiler
[DLFR01]. Moreover, extensions of these analyses seem to have only a moder-
ate effect. For example, Foster et al [FFA00b] showed that adding polymorphism
to Andersen’s [And94] inclusion based points-to analysis for C only gave a mod-
erate increase in precision and Das et al [DLFR01] came to the same conclusion
when they added a limited degree of polymorphism to the analysis in [Das00].

A possible explanation for the indicated discrepancy is that functional pro-
grammers more often write small reusable functions because of the excellent
features for abstraction. One of the goals of this work has been to confirm or
refute this discrepancy.

Subtyping Another important feature in type based analyses is subtyping.
It provides a mechanism for approximating a type by a less informative super
type. This gives a form of context sensitivity since a type may have different
super types at different call sites. It also provides a mechanism for combining
two types, such as the types of the branches of an if expression, by a common
super type. Thus, subtyping and polymorphism interfere with each other.

This raises a number of questions. Does it suffice with either polymorphism
or subtyping? How much is gained by having the combination?

Whole program analysis Another issue that also concerns context sensi-
tivity is whole program analysis versus modular program analysis. A modular
analysis which considers each module in isolation must make a worst case as-
sumption about the context in which it appears.

This will clearly degrade the precision of the analysis. But how much? Is
whole program analysis a crucial feature? And how does it interact with the
choice of monomorphism versus polymorphism?

Data types Another important design choice in a type based analysis is how
to deal with user defined data types. The intuitive and accurate approach may
require that the number of annotations on a type is exponential in the size of the
type definitions of the analyzed program. The common solution to the problem
is to limit the number of annotations on a type in some way, which leads to
spurious loss of precision. The question is how big the loss is in practice.

Contributions In order to evaluate the above features, we have implemented
a range of usage analyses with

• different degrees of polymorphism,

• with and without subtyping,

• different treatments of data types, and

• as whole program analyses and as modular analyses.
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All analyses have been implemented in the GHC compiler and have been
measured with GHC’s optimizing program transformations both enabled and
disabled.

Our systematic evaluation shows that each of these features has a signifi-
cant impact on the precision of the analysis. Especially, it is clear that some
kind of context sensitivity is needed through polymorphism or subtyping. Our
results also show that the different features are intertwined and interfere with
each other. The combined effect of polymorphism and subtyping is for example
not very dramatic although each one of them has a large effect on the accu-
racy. Another example is that whole program analysis is more important for
monomorphic analysis than polymorphic analysis.

Outline The paper is organized by considering each dimension in turn. We
evaluate different degrees of polymorphism in Section 3, subtyping in Section 4,
data types in Section 5 and whole program analysis in Section 6.

2 Usage Analysis

Implementations of lazy functional languages maintain sharing of evaluation by
updating. For example, the evaluation of

(λx.x + x) (1 + 2)

proceeds as follows. First, a closure for 1+2 is built in the heap and a reference
to the closure is passed to the abstraction. Second, to evaluate x+x the value of
x is required. Thus, the closure is fetched from the heap and evaluated. Third,
the closure is updated (i.e., overwritten) with the result so that when the value
of x is required again, the expression needs not be recomputed.

The same mechanism is used to implement lazy data structures such as
potentially infinite lists.

The sharing of evaluation is crucial for the efficiency of lazy languages. How-
ever, it also carries a substantial overhead which is often not needed. For ex-
ample, if we evaluate

(λx.x + 1) (1 + 2)

then the update of the closure is unnecessary because the argument is only used
once.

The aim of usage analysis is to detect such cases. The output of the analysis
is an annotated program. Each point in the program that allocates a closure
in the heap is annotated with 1 if the closure that is created at that point is
always used at most once. It is annotated with ω if the closure is possibly used
more than once or if the analysis cannot ensure that the closure is used at most
once.

The annotations allow a compiler to generate code where the closures are
not updated and thus effectively turning call-by-need into call-by-name. Usage
analysis also enables a number of program transformations [PJPS96, JM99].
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Usage analysis has been studied by a number of researchers
[LGH+92, Mar93, TWM95, Fax95, Gus98, WPJ99, WPJ00, GS00, Wan02].

2.1 Measuring the Effectiveness

We measured the effectiveness of the analyses by running them on the programs
from the nofib suit [Par93] which is a benchmarking suit designed to evaluate
the Glasgow Haskell Compiler (GHC). We excluded the toy programs and ran
our analysis on the programs classified in the category real but had to exclude
the following three programs: HMMS did not compile with GHC on our test
system, ebnf2ps is dependent on a version of Happy that we could not get to
work with our version of GHC, and veritas because many analyses ran out of
memory when analyzing it.

Despite the name of the category, the average size of the programs is unfor-
tunately quite small.

The notion of effectiveness When measuring the effectiveness it is natural
to do so by modifying the runtime system of GHC. The runtime system is mod-
ified to collect the data needed to compute the effectiveness during a program’s
execution.

The easiest way is to count how many created closures that are only used
once and how many of those closures that were detected by the analysis. This
can be implemented by adding three counters to the runtime system: one that
gets incremented as soon as an updatable closure is created, one that gets incre-
mented each time a closure is used a second time, and one that gets incremented
as soon as a closure annotated with 1 is created. With these counters one can
compute an effectiveness of an analysis:

closures annotated with 1

created closures − closures used twice

This is the measure used by Wansbrough [Wan02].
A drawback of this approach is that it does not take into account that each

program point can only have one annotation – if any of the closures allocated at
a program point is used more than once, that program point has to be annotated
with ω for the analysis to be sound. Thus, if there is such a program point (and
there typically are) then even a perfect analysis would not get a 100 percent
effectiveness.

What we would like to do is to compute the effectiveness by measuring the
proportion of program points that are correctly annotated instead of the propor-
tion of updates that are avoided. We, therefore, modified the run time system to
compute the best possible annotations which are consistent with the observed
run time behavior. I.e., if all the closures allocated at a specific program point is
used at most once during the execution, that program point could be annotated
with 1 otherwise ω. We did this by, for each closure, keeping track of at which
program point it was created. When a closure is used a second time we add
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its program point to the set of program points that need to be annotated with
ω. We were careful to exclude code that was not executed in the executions
such as parts of imported libraries which were not used. It is important to note
that this way of measuring is still based on running the program on a particular
input and a perfect analysis may still get an effectiveness which is less than 100
percent.

These two different ways of measuring differ also at another crucial point.
The former measurement depends very much on how many times each program
point that allocates closures is executed. If a single program point allocates a
majority of all closures, the computed effectiveness will depend very much on
whether that single program point was correctly annotated by the analysis. In
contrast, the effectiveness computed with the latter measurement will hardly be
affected by one conservative annotation.

We think that the latter notion of effectiveness is more informative and have,
therefore, used it for all our measurements.

Optimizing program transformations Our implementation is based on
GHC which is a state of the art Haskell implementation. GHC parses the
programs and translates them into the intermediate language Core, which is
essentially System F [PJPS96]. When GHC is run with optimizations turned on,
it performs aggressive program transformation on Core before it is translated
further. We inserted our analyses after GHC’s program transformations just
before the translation to lower level representations.

We ran the analysis with GHC’s program transforming optimizations both
enabled and disabled. The latter gives us a measure of the effectiveness of
an analysis on code prior to program transformations. This is relevant because
usage information can be used to guide the program transformations themselves.

3 Polymorphism

We start by evaluating usage polymorphism. Too see why it can be a useful
feature, consider the function that adds up three integers.1

plus3 x y z = x+ y + z

Which usage type should we give to this function? Since the function uses all
its arguments just once, it seems reasonable to give it the following type.

Int1 → Int1 → Int1 → Intω

The annotations on the type express that all three arguments are used just once
by the function and that the result may be used several times. However, this
type is not correct. The problem is that the function may be partially applied:

map (plus3 (1 + 2) (3 + 4)) xs

1This example is due to Wansbrough and Peyton Jones [WPJ00]
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If xs has at least two elements then plus3 (1+2) (3+4) is used more than once.
As a consequence, so is also (1 + 2) and (3 + 4).

To express that functions may be used several times we need to annotate
also function arrows. A possible type for plus3 could be:

Intω →ω Intω →ω Int1 →ω Intω

The function arrows are annotated with ω which indicates that plus3 and its
partial applications may be used several times. The price we pay is that the
first and the second argument are given the type Intω. This type is sound but
it is clearly not a good one for call sites where plus3 is not partially applied.
What is needed is a mechanism for separating call sites with different usage.

The solution to the problem is to give the function a usage polymorphic
type:

∀ u0 u1 u2 u3 | u2 ≤ u0, u3 ≤ u0, u3 ≤ u1.Intu0 →ω Intu1 →u2 Int1 →u3 Intω

The type is annotated with usage variables and the type schema contains a set of
constraints which restrict how the annotations can be instantiated. A constraint
u ≤ u′ simply specifies that the values instantiated for u must be smaller than
or equal to the values instantiated for u′ where we have the ordering that 1 < ω.
This form of polymorphism is usually referred to as constrained polymorphism
or bounded polymorphism.

In our example, u2 ≤ u0 enforces that if a partial application of plus3 to
one argument is used more than once then that first argument is also used more
than once. Similarly, u3 ≤ u0 and u3 ≤ u1 makes sure that if we partially apply
plus3 to two arguments and use it more than once then both these arguments
are used more than once.

3.1 Degrees of Polymorphism

There are many different forms of parametric polymorphism. In this paper
we consider three different systems where usage generalization takes place at
let-bindings.

• An analysis with monomorphic recursion in the style of ML. Intuitively,
this gives the effect of a monomorphic analysis where all non-recursive
calls have been unwound.

• An analysis with polymorphic recursion [Myc84, Hen93, DHM95]. Intu-
itively, this gives the effect of the previous analysis where recursion has
been (infinitely) unwound.

• An analysis where the form of type schemas are restricted so that gen-
eralized usage variables may not be constrained. A consequence of the
restriction is that an implementation need not instantiate (i.e., copy) a
potentially large constraint set whenever the type is instantiated. Wans-
brough and Peyton Jones [WPJ00] suggested this in the context of usage
analysis and called it simple usage polymorphism.
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Figure 1: Measurements of polymorphism

With simple usage polymorphism it is not possible to give plus3 the type

∀u0u1u2u3 |u2 ≤ u0, u3 ≤ u0, u3 ≤ u1.Intu0 →ω Intu1 →u2 Int1 →u3 Intω

because the generalized variables u0, u1, u2, u3 are all constrained. Instead
we can give it the type

∀ u.Intu →ω Intu →u Int1 →u Intω

where we have unified the generalized variables into one. This type is
clearly worse but it gives a degree of context sensitivity. An alternative is
to give it a monomorphic type. For example

Intω →ω Int1 →ω Int1 →1 Intω.

These types are incomparable and an implementation needs to make a
heuristic choice. We use the heuristic proposed by Wansbrough [Wan02]
to generalize the types of all exported functions and give local functions
monomorphic types.

The analyses include usage subtyping; use an aggressive treatment of algebraic
data types and are compatible with separate compilation (i.e., we analyze the
modules of the program one by one in the same order as GHC). We discuss and
evaluate all these features later on.

3.2 Evaluation

The results are shown in Figure 1, which shows the average effectiveness of each
analysis, and Section A.1, which shows the effectiveness for each program.

The most striking observation is that the results are very different depending
on whether GHC’s optimizing program transformations are turned on or off.
The effectiveness is much lower with program transformations turned on. We
believe that an explanation of this is that GHC inlines many function calls.
There is no need to create closures for the arguments of these function calls
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anymore and thus many targets for the analysis disappears. The net effect is
that the proportion of difficult cases (such as closures in data structures and
calls to unknown functions) increases which reduces the effectiveness.

Another explanation is strictness analysis [Myc82]. Strictness analysis can
decide that the argument of a function is guaranteed to be used at least once
(in any terminating computation). In those cases there is no need to suspend
the evaluation of that argument. If an argument is used exactly once then it
is a target for both strictness and usage analysis. When the strictness analysis
(as part of GHC’s program transformation) is ran first it removes some easy
targets.

Another phenomena is that the benefits of polymorphism are smaller when
program transformations are turned on. This is what you would expect since
inlining naturally makes context sensitivity less important.

The results also show that the polymorphic analyses are significantly better
than the monomorphic one. Polymorphic recursion turns out to have hardly
any effect compared to monomorphic recursion. Simple polymorphism comes
half way on unoptimized code – it is significantly better than monomorphism
but significantly worse than constrained polymorphism, which shows that it can
serve as a good compromise. This is, however, not the case for optimized code.

The largest surprise to us was that the accuracy of the monomorphic analysis
is relatively good. This seems to contradict the results reported by Wansbrough
and Peyton Jones [WPJ00] who implemented and evaluated the monomorphic
analysis from [WPJ99]. They found that the analysis was almost useless in
practice and concluded that it was the lack of polymorphism that caused the
poor results. We do not have a satisfactory explanation for this discrepancy.

4 Subtyping

Consider the following code fragment.

let x =u 1 + 2 in . . .

Here u is the usage annotation associated with the closure for 1 + 2.
The analysis can take u to be 1 if and only if x is used at most once. That

is assured by giving x the type Int1. The type system then makes sure that the
program is well typed only if x is actually used at most once.

If we on the other hand take u to be ω then x has the type Intω. It is always
sound to annotate a closure with ω regardless of how many times it is used.
We, therefore, want the term to be well typed regardless of how many times x
is actually used. The solution is to let Intω be a subtype of Int1. That is, if a
term has the type Intω we may also consider it to have the type Int1.

Subtyping makes the system more precise. Consider the function f .

f x y = if x ∗ x > 100 then x else y

It seems reasonable that we should be able to give it, for example, the type

Intω →ω Int1 →ω Int1.
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Figure 2: Measurements of subtyping

This type expresses that if the result of the function is used at most once then
the second argument is used only once. The first argument is, however, used at
least twice regardless of how many times the result is used.

To derive this type we must have usage subtyping. Otherwise, the types of
the branches of the conditional would be incompatible – x has type Intω and y
has the type Int1. With subtyping we can consider x to have the type Int1.

Without subtyping x and y has to have the same type and the type of the
function must be

Intω →ω Intω →ω Intω

which puts unnecessary demands on y.
Subtyping can also give a degree of context sensitivity. Consider, for exam-

ple, the following program.

let f x = x+ 1
a = 1 + 2
b = 3 + 4

in f a+ f b+ b

Here, b is used several times and is given the type Intω. Without subtyping
nor polymorphism we would have to give a the same type and the two call sites
would pollute each other.

When subtyping is combined with polymorphism it naturally leads to con-
strained polymorphism. Note, however, that subtyping is not the only source
of inequality constraints in a usage analysis. Inequality constraints are also
used for the correct treatment of partial application (see Section 3) and data
structures. Thus, we use constrained polymorphism also in the systems without
subtyping.

4.1 Evaluation

We have evaluated two systems without subtyping – a polymorphicly recursive
and a monomorphic analysis. Both analyses use an aggressive treatment of
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data types and are compatible with separate compilation. Figure 2 shows the
average effectiveness of each analysis. Section A.2 shows the effectiveness for
each program. We have included the system with polymorphic recursion and
subtyping and the monomorphic system with subtyping from Section 3 for an
easy comparison.

The results show that the accuracy of the monomorphic system without
subtyping is poor. The precision is dramatically improved if we add subtyping
or polymorphism. Our explanation is that both polymorphism and subtyping
gives a degree of context sensitivity which is crucial.

The polymorphic system without subtyping is in principle incomparable to
the monomorphic system with subtyping. However, in practice the polymorphic
system outcompetes the monomorphic one. The difference is much smaller when
the analyses are run on optimized code which is consistent with our earlier
observation that context sensitivity becomes less important because of inlining.

The combination of subtyping and polymorphism has a moderate but sig-
nificant effect when compared to polymorphic analysis without subtyping. The
effect is relatively larger on optimized code. The explanation we can provide is
that the proportion of hard cases - which requires the combination – is larger
because the optimizer has already dealt with many simple cases.

5 Algebraic Data Types

An important issue is how to deal with data structures such as lists and user
defined data types. In this section we evaluate some different approaches.

Let us first consider the obvious method. The process starts with the user
defined data types which only depend on predefined types. Suppose T is such
a type.

data T ~α = C1 ~τ1 | . . . | Cn ~τn

The types on the right hand side are annotated with fresh usage variables. If
there are any recursive occurrences they are ignored. The type is then parame-
terized on these usage variables, ~u.

data T ~u ~α = C1 ~τ
′
1 | . . . | Cn ~τ

′
n

Finally, any recursive occurrence of T is replaced with T ~u. The process con-
tinues with the remaining types in the type dependency order and when T is
encountered it is replaced with T ~u′ where ~u′ is a vector of fresh variables. If
there are any mutually recursive data types they are annotated simultaneously.

As an example consider the following data type for binary trees.

data Tree α = Node (Tree α) (Tree α) | Leaf α

When annotated, it contains three annotation variables:

data Tree 〈k0, k1, k2〉 α = Node (Tree 〈k0, k1, k2〉 α)k0 (Tree 〈k0, k1, k2〉 α)k1

| Leaf αk2
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This approach is simple and accurate and we used it in all the analyses in
the previous sections. The net effect is equivalent to a method where all non-
recursive occurrences in a type are first unwound. As a result the number of
annotation variables can grow exponentially. An example of this is the following
data type.

data T0 〈k0〉 = C Intk0

data T1 〈k0, k1, k2, k3〉 = C′
1 (T0 〈k1〉)

k0 | C′′
1 (T0 〈k3〉)

k2

. . .

data Tn 〈k0, . . . , km〉 = C′
n (Tn−1 〈. . .〉)

k0 | C′′
n (Tn−1 〈. . .〉)

km/2

Here Tn will contain 2n usage variables.
In practice, the number of required variables sometimes grows very large.

The largest number we have encountered was a type in the Glasgow Haskell
Compiler which required over two million usage annotations. As a consequence
a single subtyping step leads to over two million inequality constraints and our
implementation simply could not deal with all those constraints. This problem
was the reason for why we had to exclude the program veritas from our study.
It is clear that an alternative is needed and we tried two different ones.

The first approach was to put a limit on the number of usage variables which
are used to annotate a type. If the limit is exceeded then we simply use each
variable several times on the right hand side of the type. We do not try to do
anything clever and when we exceed the limit we simply recycle the variables
in a round robin manner. This approach leads to ad-hoc spurious behavior of
the analysis when the limit is exceeded but maintains good accuracy for small
types. We tried this approach with a limit of 100, 10 and 1.

The second approach was to simply annotate all types on the right hand side
with only ω. The effect is that information is lost when something is inserted
into a data structure – the analysis simply assumes the worst about its usage.
Intuitively this can be thought of as a special case of the approach above where
the limit is zero.

All the analyses used for measuring the treatment of data types have subtyp-
ing and polymorphic recursion and are compatible with separate compilation.

5.1 Evaluation

The average effectiveness of each analysis is shown in Figure 3. In Section A.3
the effectiveness for each program is shown.

The results are quite different for optimized and unoptimized code. In the
case of unoptimized code there is a clear loss in precision when we limit the
number of annotation variables. The loss is quite small when the limit is 100
but quite dramatic when the limit is only 10. Going further and annotating
with only one or no variables has a smaller effect.

The situation is different for optimized code. Here there is only a small
difference when the number of variables are limited to 100 or 10. But there is a
noticeable effect when one or no variables are used.
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Figure 3: Measurements of treatments of data types

We believe that this effect stems from Haskell’s class system. When Haskell
programs are translated into Core each class context is translated to a so called
dictionary parameter. A dictionary is simply a record of the functions in an
instance of a class. Large classes leads to large records of functions which
are passed around at run time. When the number of annotations are limited,
it substantially degrades the precision for these records. Presumably, most
dictionaries require more than 10 variables but less than 100 which explains the
effect for unoptimized code.

These records are often eliminated by GHC’s program transformations which
specializes functions for each particular instance in a form of partial evaluation
[Jon94, Aug93]. Thus, in optimized code there are not so many large types
which explains why the effect of limiting the number of variables to 10 is quite
small. When the limit on the other hand is one or zero it strikes all user defined
types which has a significant effect.

6 Whole Program Analysis

So far all the analyses have been compatible with separate compilation. In this
section we consider whole program analysis.

Suppose that f is an exported library function where the closure created for
x′ is annotated with u.

f x = let x′ =u x+ 1 in λy.x′ + y

In the setting of separate compilation we have to decide which value u should
take without knowledge of how f is called. In the worst case, f is applied to
one argument and the resulting function is applied repeatedly. The closure of
x′ is then used repeatedly so we must assume the worst and let u be equal to
ω. We can then give f the type

Int1 →ω Int1 →ω Intω
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Figure 4: Measurements of whole program analysis

With separate compilation we must make sure that the types of exported func-
tions are general enough to be applicable in all contexts. That is, it must still
be possible to annotate the remaining modules such that the resulting program
is well typed. Luckily, this is always possible if we ensure that the types of all
exported functions have an instance where the positive (covariant) positions in
the type are annotated with ω. In the type of f this is reflected in that the
function arrows and the resulting integer are annotated with ω. Wansbrough
and Peyton Jones [WPJ00] calls this process pessimization. Further discussion
can be found in Wansbrough’s thesis [Wan02].

In the setting of whole program analysis this process in unnecessary which
improves the result of the analysis. We have chosen to evaluate the effect on two
analyses, the polymorphicly recursive analysis with subtyping and the monomor-
phic analysis with subtyping. Both analyses use the aggressive treatment of data
types.

6.1 Evaluation

The average effectiveness for each analysis is shown in Figure 4. Section A.4
shows the effectiveness for each program. They show that whole program anal-
ysis improves both analyses significantly on both unoptimized and optimized
code.

The effect is greater for the monomorphic analysis. The explanation is that
the inaccuracies that are introduced by the pessimization, needed for separate
compilation, spreads further in the monomorphic analysis due to the lack of
context sensitivity. One can think of pessimization as simulating the worst
possible calling context which then spreads to all call sites.

An interesting observation is that there is only a small difference between
the polymorphic and the monomorphic whole program analysis for optimized
code. The combination of aggressive inlining and whole program analysis almost
cancels out the effect of polymorphism.
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7 Related Work

The usage analyses in this paper build on the type based analyses in
[TWM95, Gus98, WPJ99, WPJ00, GS00, Wan02]. The use of polymorphism
in usage analysis was first sketched in [TWM95] and was developed further in
[GS00] and [WPJ00, Wan02] where simple polymorphism was proposed. Usage
subtyping was introduced in [Gus98, WPJ99]. The method for dealing with
data types was suggested independently by Wansbrough [Wan02] and ourselves
[Ged03]. The method for dealing with separate compilation is due to Wans-
brough and Peyton Jones [WPJ99].

The measurements of Wansbrough and Peyton Jones on their monomorphic
analysis with subtyping and a limited treatment of data types showed that is was
”almost useless in practice”. Wansbrough later made thorough measurements
of the precision of simple usage polymorphism with some different treatments
of data types in [Wan02]. He concludes that the accuracy of the simple usage
polymorphism with a good treatment of data types is reasonable which is con-
sistent with our findings. He also compares the accuracy with a monomorphic
usage analysis but the comparison is incomplete – the monomorphic analysis
only has a very coarse treatment of data types.

Foster et al [FFA00a] evaluate the effect of polymorphism and monomor-
phism on Steensgaard’s equality based points-to analysis [Ste96] as well as An-
dersen’s inclusion based points-to analysis [And94]. Their results show that
the inclusion based analysis is substantially better than the unification based.
Adding polymorphism to the equality based analysis also has a substantial ef-
fect but adding polymorphism to the inclusion based analysis gives only a small
improvement.

There are clear analogies between Steensgaard’s equality based analysis and
usage analysis without subtyping. Andersen’s inclusion based analysis relates
to usage analysis with subtyping. Given these relationships, our results are
consistent with the results of Foster et al with one exception – the combination
of polymorphism and subtyping has a significant effect in our setting. However,
when we apply aggressive program transformations prior to the analysis and
run it in whole program analysis mode then our results coincide.

8 Conclusions

We have performed a systematic evaluation of the impact on the accuracy of
four dimensions in the design space of a type based usage analyses for Haskell.
We evaluated

• different degrees of polymorphism: polymorphic recursion, monomorphic
recursion, simple polymorphism and monomorphism,

• subtyping versus no subtyping,

• different treatments of user defined types, and
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• whole program analysis versus analysis compatible with separate compi-
lation.

Our results show that all of these features individually have a significant effect
on the accuracy. A striking outcome was that the results depended very much
on whether the analyzed programs were first subject to aggressively optimizing
program transformations.

Our evaluation of polymorphism and subtyping showed that the polymorphic
analyses clearly outperform their monomorphic counterparts. The effect was
larger when the analyses did not incorporate subtyping. This is not surprising
given that subtyping gives a degree of context sensitivity and, thus, partially
overlaps with polymorphism. Polymorphic recursion turned out to give very
little when compared to monomorphic recursion. For unoptimized code, simple
polymorphism (where variables in types schemas cannot be constrained) was
shown to lie in between monomorphism and constrained polymorphism.

The measurements also showed that the treatment of data types is impor-
tant. The effectiveness of the different alternatives turned out to depend on
whether the code was optimized or not. We believe that the explanation is
coupled to the implementation of Haskell’s class system and, thus, that this
observation might be rather Haskell specific.

Whole program analysis turned out to have a rather large impact. The
effect was greater for monomorphic analysis. The reason is that the conservative
assumptions, that have to be made in the setting of separate compilation, have
larger impact due to the lack of context sensitivity in monomorphic analysis. In
fact, the whole program monomorphic analysis with subtyping was almost as
good as the whole program polymorphic analysis with subtyping on optimized
programs.
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A Detailed Results of the Measurements

In three cases the analysis under consideration ran out of memory when ana-
lyzing a particular program. For these programs the effectiveness is reported as
”-” and is excluded from the computed average.

A.1 Polymorphism

Effectiveness
Program polyrec monorec simple-poly mono

anna 55.61% 54.69% 50.62% 30.64%
bspt 44.98% 44.98% 28.88% 13.98%

cacheprof 38.34% 38.34% 31.76% 12.28%
compress 30.22% 30.22% 18.71% 5.76%
compress2 32.70% 32.70% 20.75% 6.92%

fem 66.55% 66.31% 56.35% 26.50%
fluid 68.84% 68.17% 52.64% 35.47%

fulsom 50.51% 48.48% 37.82% 24.87%
gamteb 59.46% 58.38% 42.16% 22.16%

gg 55.54% 55.25% 45.34% 12.24%
grep 36.02% 36.02% 23.12% 11.29%

hidden 63.92% 63.13% 47.63% 23.58%
hpg 49.51% 45.92% 39.05% 15.20%
infer 48.87% 48.42% 43.02% 18.92%
lift 38.40% 38.02% 34.22% 19.77%

linear 63.90% 63.41% 57.80% 29.76%
maillist 34.90% 34.90% 20.31% 6.25%
mkhprog 46.46% 46.46% 38.19% 9.84%
parser 38.43% 38.43% 34.50% 8.95%

pic 60.71% 59.29% 46.25% 25.00%
polygp 41.86% 41.86% 23.26% 9.30%
prolog 53.42% 53.42% 43.49% 17.81%
reptile 52.64% 50.95% 45.45% 17.97%

rsa 40.36% 38.57% 29.60% 5.83%
rx 65.27% 64.91% 49.82% 32.23%
scs 60.00% 58.69% 47.32% 26.27%

symalg 48.82% 46.75% 38.17% 18.64%
average 49.86% 49.14% 38.75% 18.05%

Figure 5: Polymorphism on unoptimized code
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Effectiveness
Program polyrec monorec simple-poly mono

anna 14.74% 13.14% 12.02% 11.86%
bspt 21.43% 21.43% 19.64% 4.46%

cacheprof 12.03% 12.03% - 10.53%
compress 10.53% 10.53% 0.00% 0.00%
compress2 14.63% 7.32% 0.00% 2.44%

fem 14.89% 14.89% 13.30% 8.51%
fluid 20.28% 20.28% 17.13% 15.38%

fulsom 23.02% 10.32% 7.14% 9.68%
gamteb 4.21% 4.21% 3.16% 2.11%

gg 15.15% 15.15% 12.63% 8.59%
grep 2.63% 2.63% 0.00% 0.00%

hidden 12.50% 10.94% 7.03% 7.03%
hpg 9.57% 9.57% 8.26% 7.83%
infer 2.42% 2.42% 0.00% 0.61%
lift 7.52% 7.52% 6.02% 3.76%

linear 15.56% 15.56% 13.33% 13.33%
maillist 4.76% 4.76% 0.00% 0.00%
mkhprog 1.41% 1.41% 1.41% 1.41%
parser 0.62% 0.62% 0.00% 0.00%

pic 8.62% 8.62% 6.03% 6.03%
polygp 0.00% 0.00% 0.00% 0.00%
prolog 10.45% 10.45% 1.49% 8.96%
reptile 9.00% 9.00% 6.00% 7.00%

rsa 13.33% 13.33% 6.67% 6.67%
rx 26.06% 25.76% - 14.24%
scs 21.74% 21.74% 17.79% 20.16%

symalg 12.16% 12.16% 6.76% 6.76%
average 11.45% 10.58% 6.63% 6.57%

Figure 6: Polymorphism on optimized code
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A.2 Subtyping

Effectiveness
Program polyrec polyrec-nosub mono mono-nosub

anna 55.61% 51.73% 30.64% 2.28%
bspt 44.98% 34.65% 13.98% 2.74%

cacheprof 38.34% 34.62% 12.28% -
compress 30.22% 23.02% 5.76% 3.60%
compress2 32.70% 26.42% 6.92% 3.14%

fem 66.55% 61.63% 26.50% 5.52%
fluid 68.84% 60.02% 35.47% 5.37%

fulsom 50.51% 42.13% 24.87% 4.57%
gamteb 59.46% 50.63% 22.16% 3.78%

gg 55.54% 48.69% 12.24% 2.92%
grep 36.02% 27.42% 11.29% 4.84%

hidden 63.92% 53.64% 23.58% 1.42%
hpg 49.51% 46.08% 15.20% 3.59%
infer 48.87% 44.37% 18.92% 3.60%
lift 38.40% 34.22% 19.77% 4.56%

linear 63.90% 59.76% 29.76% 4.39%
maillist 34.90% 28.65% 6.25% 3.12%
mkhprog 46.46% 40.55% 9.84% 3.15%
parser 38.43% 36.03% 8.95% 0.22%

pic 60.71% 52.14% 25.00% 3.93%
polygp 41.86% 33.72% 9.30% 2.33%
prolog 53.42% 48.29% 17.81% 4.79%
reptile 52.64% 49.05% 17.97% 3.81%

rsa 40.36% 34.98% 5.83% 3.14%
rx 65.27% 56.07% 32.23% 1.25%
scs 60.00% 52.55% 26.27% 5.23%

symalg 48.82% 44.97% 18.64% 5.33%
average 49.86% 43.56% 18.05% 3.56%

Figure 7: Subtyping on unoptimized code
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Effectiveness
Program polyrec polyrec-nosub mono mono-nosub

anna 14.74% 12.50% 11.86% 0.32%
bspt 21.43% 6.25% 4.46% 0.00%

cacheprof 12.03% 3.76% 10.53% 0.00%
compress 10.53% 10.53% 0.00% 0.00%
compress2 14.63% 14.63% 2.44% 0.00%

fem 14.89% 14.36% 8.51% 1.06%
fluid 20.28% 16.08% 15.38% 3.85%

fulsom 23.02% 22.22% 9.68% 2.38%
gamteb 4.21% 4.21% 2.11% 2.11%

gg 15.15% 5.05% 8.59% 1.01%
grep 2.63% 2.63% 0.00% 0.00%

hidden 12.50% 8.59% 7.03% 1.56%
hpg 9.57% 5.65% 7.83% 0.87%
infer 2.42% 1.82% 0.61% 0.00%
lift 7.52% 7.52% 3.76% 0.00%

linear 15.56% 14.44% 13.33% 0.00%
maillist 4.76% 4.76% 0.00% 0.00%
mkhprog 1.41% 0.00% 1.41% 0.00%
parser 0.62% 0.62% 0.00% 0.00%

pic 8.62% 5.17% 6.03% 1.72%
polygp 0.00% 0.00% 0.00% 0.00%
prolog 10.45% 8.96% 8.96% 0.00%
reptile 9.00% 9.00% 7.00% 2.00%

rsa 13.33% 13.33% 6.67% 0.00%
rx 26.06% 19.70% 14.24% 3.03%
scs 21.74% 17.79% 20.16% 0.79%

symalg 12.16% 10.81% 6.76% 4.05%
average 11.45% 8.90% 6.57% 0.92%

Figure 8: Subtyping on optimized code
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A.3 Data Types

Effectiveness
Program no limit 100 10 1 0

anna 55.61% 54.81% 47.97% 45.75% 45.44%
bspt 44.98% 43.16% 27.36% 27.63% 20.36%

cacheprof 38.34% 37.72% 31.39% 30.65% 29.40%
compress 30.22% 30.22% 15.83% 15.83% 15.83%
compress2 32.70% 32.70% 15.72% 15.72% 15.72%

fem 66.55% 64.99% 35.37% 34.89% 34.53%
fluid 68.84% 66.73% 40.94% 38.64% 36.63%

fulsom 50.51% 47.21% 33.76% 32.99% 32.49%
gamteb 59.46% 56.76% 26.49% 26.13% 25.59%

gg 55.54% 54.23% 36.73% 36.15% 35.86%
grep 36.02% 35.48% 22.04% 21.51% 21.51%

hidden 63.92% 62.03% 40.03% 38.77% 36.39%
hpg 49.51% 47.22% 37.75% 37.25% 37.25%
infer 48.87% 43.92% 39.64% 39.19% 38.74%
lift 38.40% 38.40% 33.46% 31.94% 31.56%

linear 63.90% 60.49% 39.51% 39.02% 38.54%
maillist 34.90% 33.33% 17.19% 17.19% 17.19%
mkhprog 46.46% 46.06% 37.40% 37.40% 36.61%
parser 38.43% 38.43% 32.53% 32.53% 32.53%

pic 60.71% 56.07% 34.64% 31.61% 30.36%
polygp 41.86% 40.70% 20.93% 20.93% 20.93%
prolog 53.42% 52.40% 41.44% 40.41% 40.41%
reptile 52.64% 52.43% 37.63% 37.00% 37.00%

rsa 40.36% 39.91% 30.04% 30.04% 29.15%
rx 65.27% 64.64% 45.45% 42.50% 39.55%
scs 60.00% 57.39% 37.12% 36.21% 34.12%

symalg 48.82% 47.04% 35.50% 35.21% 35.21%
average 49.86% 48.31% 33.11% 32.34% 31.44%

Figure 9: Data types on unoptimized code
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Effectiveness
Program no limit 100 10 1 0

anna 14.74% 14.74% 14.42% 13.46% 13.46%
bspt 21.43% 21.43% 21.43% 21.43% 6.25%

cacheprof 12.03% 12.03% 12.03% 7.52% 4.51%
compress 10.53% 10.53% 10.53% 10.53% 10.53%
compress2 14.63% 14.63% 12.20% 12.20% 12.20%

fem 14.89% 14.89% 14.89% 14.36% 14.36%
fluid 20.28% 20.28% 20.28% 19.23% 16.43%

fulsom 23.02% 23.02% 23.02% 23.02% 22.22%
gamteb 4.21% 4.21% 4.21% 4.21% 4.21%

gg 15.15% 15.15% 14.65% 10.10% 5.05%
grep 2.63% 2.63% 2.63% 2.63% 2.63%

hidden 12.50% 12.50% 12.50% 10.16% 9.38%
hpg 9.57% 9.57% 9.57% 9.13% 9.13%
infer 2.42% 2.42% 2.42% 1.82% 1.82%
lift 7.52% 7.52% 7.52% 7.52% 7.52%

linear 15.56% 15.56% 15.56% 14.44% 14.44%
maillist 4.76% 4.76% 4.76% 4.76% 4.76%
mkhprog 1.41% 1.41% 1.41% 1.41% 1.41%
parser 0.62% 0.62% 0.62% 0.62% 0.62%

pic 8.62% 8.62% 8.62% 8.62% 4.31%
polygp 0.00% 0.00% 0.00% 0.00% 0.00%
prolog 10.45% 10.45% 10.45% 10.45% 8.96%
reptile 9.00% 9.00% 9.00% 8.00% 8.00%

rsa 13.33% 13.33% 13.33% 13.33% 13.33%
rx 26.06% 22.42% 22.12% 16.36% 15.76%
scs 21.74% 21.74% 21.74% 19.76% 18.97%

symalg 12.16% 12.16% 12.16% 10.81% 10.81%
average 11.45% 11.32% 11.19% 10.22% 8.93%

Figure 10: Data types on optimized code
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A.4 Whole Program Analysis

Effectiveness
Program polyrec polyrec-whole mono mono-whole

anna 55.61% 59.80% 30.64% 44.27%
bspt 44.98% 48.33% 13.98% 29.79%

cacheprof 38.34% 69.85% 12.28% 25.81%
compress 30.22% 40.29% 5.76% 19.42%
compress2 32.70% 38.39% 6.92% 23.90%

fem 66.55% 69.42% 26.50% 54.92%
fluid 68.84% 73.35% 35.47% 57.62%

fulsom 50.51% 61.68% 24.87% 47.46%
gamteb 59.46% 63.24% 22.16% 48.65%

gg 55.54% 57.73% 12.24% 27.11%
grep 36.02% 43.55% 11.29% 20.97%

hidden 63.92% 71.04% 23.58% 47.15%
hpg 49.51% 54.41% 15.20% 30.23%
infer 48.87% 63.29% 18.92% 35.59%
lift 38.40% 44.11% 19.77% 28.90%

linear 63.90% 71.71% 29.76% 59.02%
maillist 34.90% 45.31% 6.25% 21.88%
mkhprog 46.46% 52.76% 9.84% 18.11%
parser 38.43% 40.39% 8.95% 27.29%

pic 60.71% 66.07% 25.00% 50.71%
polygp 41.86% 52.33% 9.30% 19.77%
prolog 53.42% 60.62% 17.81% 34.59%
reptile 52.64% 57.93% 17.97% 33.83%

rsa 40.36% 44.84% 5.83% 32.74%
rx 65.27% 71.25% 32.23% 57.05%
scs 60.00% 69.54% 26.27% 50.98%

symalg 48.82% 53.55% 18.64% 39.64%
average 49.86% 57.21% 18.05% 36.57%

Figure 11: Whole program analysis on unoptimized code
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Effectiveness
Program polyrec polyrec-whole mono mono-whole

anna 14.74% 17.63% 11.86% 17.63%
bspt 21.43% 22.32% 4.46% 22.32%

cacheprof 12.03% 16.54% 10.53% 16.54%
compress 10.53% 21.05% 0.00% 21.05%
compress2 14.63% 24.39% 2.44% 24.39%

fem 14.89% 19.15% 8.51% 18.62%
fluid 20.28% 32.52% 15.38% 24.13%

fulsom 23.02% 35.71% 9.68% 35.71%
gamteb 4.21% 18.95% 2.11% 18.95%

gg 15.15% 18.18% 8.59% 18.18%
grep 2.63% 7.89% 0.00% 7.89%

hidden 12.50% 26.56% 7.03% 23.44%
hpg 9.57% 12.61% 7.83% 11.74%
infer 2.42% 15.76% 0.61% 15.15%
lift 7.52% 16.54% 3.76% 15.79%

linear 15.56% 22.22% 13.33% 20.00%
maillist 4.76% 19.05% 0.00% 19.05%
mkhprog 1.41% 1.41% 1.41% 1.41%
parser 0.62% 1.88% 0.00% 1.88%

pic 8.62% 15.52% 6.03% 15.52%
polygp 0.00% 7.69% 0.00% 7.69%
prolog 10.45% 14.93% 8.96% 14.93%
reptile 9.00% 15.00% 7.00% 15.00%

rsa 13.33% 26.67% 6.67% 26.67%
rx 26.06% 39.39% 14.24% 23.03%
scs 21.74% 32.02% 20.16% 32.02%

symalg 12.16% 16.22% 6.76% 16.22%
average 11.45% 19.18% 6.57% 17.96%

Figure 12: Whole program analysis on optimized code
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Embedding Static Analysis into Tableaux and

Sequent based Frameworks

Tobias Gedell

Abstract

In this paper we present a method for embedding static analysis into
tableaux and sequent based frameworks. In these frameworks, the infor-
mation flows from the root node to the leaf nodes. We show that the
existence of free variables in such frameworks introduces a bi-directional
flow, which can be used to collect and synthesize arbitrary information.

We use free variables to embed a static program analysis in a sequent
style theorem prover used for verification of Java programs. The analysis
we embed is a reaching definitions analysis, which is a common and well-
known analysis that shows the potential of our method.

The achieved results are promising and open up for new areas of ap-
plication of tableaux and sequent based theorem provers.

1 Introduction

The aim of this work is to integrate static program analysis with theorem provers
used for program verification. In order to do so, the mismatch between the
synthetic nature of static program analysis and analytic nature of tableaux and
sequent calculi must be bridged. One of the major differences is the flow of
information.

In a program analysis, information is often synthesized by dividing a program
into its subcomponents, computing some information for each component and
merging the computed information. This gives a flow of information that is
directed bottom-up, with the subcomponents at the bottom.

Both tableaux and sequent style provers work in the opposite way. They take
a theorem as input and, by applying the rules of their calculi, gradually divide
it into branches, corresponding to logical case distinction, until all branches can
be proved or refuted. In a ground calculus, there is no exchange of information
between different branches. Neither is there a need for this, since the rules of
the calculus only extend the proof by adding new nodes and adding a node to
a branch has no effect on the other branches. Because of this, the information
flow in a ground calculus is uni-directional—directed top-down, from the root
to the leaves of the proof tree.
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Tableaux calculi are often extended with free variables which are used for
handling universal quantification (in the setting of sequent calculi, free vari-
ables correspond to meta variables, which are used for existential quantifica-
tion) [Fit96]. The addition of free variables breaks the uni-directional flow of
information. When a branch instantiates a free variable, the instantiation has
to be propagated to the point where the free variable was introduced and all
points where it is used. Therefore, there must exist a flow of information go-
ing backwards in the proof tree. By exploiting this bi-directional flow, we can
collect and synthesize arbitrary information which opens up for new areas of
application of the calculi.

We embed our program analysis in a sequent calculus using meta variables.
The reason for doing so is that logics for program verification could greatly
benefit from an integration with program analysis. An example of this is the
verification of loops. When dealing with recursion, user interaction is often
needed, which makes the verification very costly. Having access to cheap pro-
gram analyses could reduce this need for interaction and, thus, reduce the overall
cost. It can also reduce the cost of verifying program constructs that the veri-
fiers can cope with automatically. This is the case since program analyses are
often tailor made for specific properties and are, thus, often much more efficient
than a general purpose verifier.

The following are the main contributions of this work.

• We show how synthesis can be performed in a tableau or sequent style
prover, which opens up for new areas of application.

• We show how the rules of a program analysis can be embedded into a pro-
gram logic and coexist with the original rules by using a tactic language.

• We give a proof-of-concept of our method by presenting the full imple-
mentation of a program analysis in an interactive theorem prover.

The outline of this paper is as follows. In Section 2, we discuss the bi-
directional flow of information introduced by free variables. In Section 3, we
briefly describe the used theorem prover. Section 4 and Section 5 present the
used program analysis and its implementation in the theorem prover. In Section
6, we draw conclusions and in Section 7, we discuss future work.

2 Flow of Information

By using the mechanism of free variables, information can be exchanged between
arbitrary nodes in a proof. This is very useful since our program analysis prop-
agates information computed at the subcomponents of the program to the root
node. In a proof, the subcomponents of the program correspond to leaf nodes.
To illustrate how it works, consider a tableau created with a destructive calculus
where, at the root node, a free variable I is introduced. When I is instantiated
by a branch closure, the closing substitution is applied to all branches where
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I occurs. This allows us to express a number of analyses. One example is an
analysis that establishes whether a property P holds for any branch in a proof.
In order to do this, the rule for closure is modified. Normally, the closure rule
finds two formulas ϕ and ¬ψ occurring in the same branch and a substitution
that unifies ϕ and ψ. The closure rule is modified to find a closing substitution
for a branch and check whether P holds. If it does, the closing substitution is
extended with an instantiation of the free variable I to a constant symbol c.
We can now use this calculus to construct a proof as usual and check whether
I has been instantiated to c. If it has, we know that P holds for at least one of
the branches.

There is still a limit to how much information that can be passed to the root
node. It is not possible to gather unique information from each branch since
they all instantiate the same variable, I. This can be changed by modifying
the extension rule in the following way. When two branches are introduced
in a proof, two new free variables, IL and IR, are introduced and I is instan-
tiated to branch(IL, IR). IL is used for the leftmost branch and IR for the
rightmost branch. This ensures that each branch instantiates a unique variable,
and removes the possibility of conflicting instantiations, since each variable is
instantiated at most once, either by extending or closing the branch to which it
belongs.

When the tableau shown in Figure 1 has been closed, the instantiation of I
will be the term branch(branch(info1, info2), branch(info3, info4)) which contains
the information of all four branches. The tableau calculus has, thus, been used
to synthesize information from the leaf nodes.

This is almost enough to be able to implement our program analysis. The
remaining problem is that we want to be able to distinguish between different
types of branches. An example of this is found in Section 4.2 where different
types of branches compute different collections of equations. We solve this
problem by, instead of always using the symbol branch, allowing for arbitrary
function symbols.

2.1 Non Destructive Calculi

In a non destructive constraint tableau, as described in [Gie01], we can express
analyses using the same method.

In a constraint tableau, each node n has a sink object that contains all
closing substitutions for the sub tableau having n as its top node. When adding
a node to a branch, all closing substitutions of the branch are added to the
node’s sink object. The substitutions in the sink object are then propagated to
the sink object of the parent. If the parent is a node with more than one child,
it has a merger object that receives the substitution and checks whether it is a
closing substitution for all its children. If it is, then it is propagated upwards,
otherwise it is discarded. If the parent has only one child, the substitution is
propagated upwards directly.

A tableau working like this is called non destructive since the free variables
are never destructively instantiated. Instead, a set of all possible closing instan-
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Figure 1: Example Tableau

tiations is computed for each branch and propagated upwards. When a closing
substitution reaches the root node, the search is over since we know that it
closes the entire tableau.

Using our method in a non destructive constraint tableau is easy. We modify
the sink object of the root node to not only, when a closing substitution is
found, give us the result that the tableau is closable but also give us the closing
substitution. The mechanism of the sink objects can also make it easier to
implement some of the extensions described in Section 7.

3 The KeY Prover

The theorem prover used to implement our program analysis is the KeY system
[ABB+05]. The KeY system is an interactive theorem prover for the Java Card
language that uses a dynamic logic [Bec01]. The dynamic logic is a modal logic
in which Java programs can occur as parts of formulas. An example of this is
the following formula which denotes that after executing the assignment i = 1

the value of the variable i is greater than 0.

<{ i = 1; }> i > 0

The KeY system is based on a non destructive sequent calculus with a stan-
dard semantics. It is well known that sequent calculi can be seen as the duality
of tableaux calculi and we use this to carry over the method described in Section
2 to the sequent calculus used by KeY.

3.1 Tactic Programming Language

Theorem provers for program verification typically have a large set of rules at
hand to handle all possible program constructs. Instead of hard-wiring these
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into the core of the theorem prover, a more general solution is to implement the
rules using a domain specific tactic language.

The KeY system has such a tactic language and the rules written in this
language are called taclets [BGH+04]. In most theorem provers for sequent
calculi, the rules perform some kind of pattern matching on sequents. Typically,
the rules consist of a guard pattern and an action. If a sequent matches the
guard pattern then the rule is applied and the action performed on the sequent.
What it means for a pattern to match a sequent is that there is a substitution,
unifying the pattern and the sequent under consideration. The actions that
can be performed include closing a proof branch, creating modified copies of
sequents, and creating new branches.

To introduce the syntax of the KeY tactic language, we present one of the
simplest rules, the close by true rule.

close_by_true {

find (==> true)

close goal

};

The pattern matches sequents where true is found on the right-hand side. If
it is, we know that we can close the proof branch under consideration, which is
done by the close goal action.

If we, instead of closing the branch, want to create a modified copy of the
sequent, we use the replacewith action, as shown by the following rule.

not_left {

find (!b ==>)

replacewith (==> b)

};

The rule replaces negated formulas on the left-hand side, by their negation on
the right-hand side. The proof branch remains open, but contains the modified
sequent. New branches can be created by having multiple replacewith actions.

So far, we have only considered sequents that do not contain embedded
programs. When embedding programs in formulas, a modality operator is used.
There are a number of different modality operators having different semantics.
The diamond operator <{p}>φ expresses that there is a terminating execution
of the program p, after which the formula φ holds. The box operator [{p}]φ
expresses that after all terminating executions, the formula φ holds. For our
purposes, the modalities do not have any meaning since we are not trying to
construct a proof in the traditional way. The syntax of the taclet language
does, however, force us to have a modality operator attached to all programs.
We, therefore, arbitrarily choose to use the diamond operator. In the future, it
would be better to have a general-purpose operator with a free semantics that
can be used in cases like this.

As an example of a taclet matching an embedded Java program, consider the
following taclet, that matches an assignment of a literal to a variable attached
to the formula true and closes the proof branch.
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term_assign_literal {

find (==> <{#var = #literal;}>(true))

close goal

};

4 Reaching Definitions Analysis

The analysis we implement using our technique is a reaching definitions analysis
[NNH99]. This analysis is commonly used by compilers to perform several kinds
of optimization such as, for example, loop optimization and constant compu-
tation [ASU86]. The analysis approximates the set of assignments that may
reach each individual statement in a program. Consider the following program,
consisting of three assignments, where each statement is annotated with a label.

a
0

= 1; b
1

= 1; a
2

= 1;

Consider the statement annotated with 1. The statement executed before it
(which we will refer to as its preceding statement) is the assignment a

0

= 1 and
since a has not been modified, it still contains the value 1. We say that the
assignment annotated with 0 reaches the statement annotated with 1.

For each statement, we compute the set of labels of the assignments that
reach the statement before and after it has been executed. We call these sets
the entry and exit sets, respectively. In this example, the label 0 will be in
the entry set of the last assignment but not in its exit set, since the variable a

is modified. We do not only store the labels of the assignments, but also the
names of the assigned variables. The following are the entry and exit sets of our
example program.

label Entry Exit
0 {} {(a, 0)}
1 {(a, 0)} {(a, 0), (b, 1)}
2 {(a, 0), (b, 1)} {(b, 1), (a, 2)}

It is important to understand that the results of the analysis will be an
approximation since the reaching definitions problem is undecidable. We do,
however, ensure that the approximation is sound, which in this context means
that if an assignment reaches a statement then the label of the assignment must
be present in the entry set of that statement. The opposite may not hold, a
label of an assignment being present in an entry set of a statement, does not
necessarily mean that the assignment actually reaches that statement.

It is easy to see that for any program, a sound result of the analysis would
be to let all entry and exit sets be equal to the set of all labels occurring in the
program. This result would, however, not be useful.

The analysis consists of two parts: a constraint-generation part and a
constraint-solving part. The constraint-generation traverses the program and
generates a collection of equations defining the entry and exit sets. The equa-
tions are then solved by a constraint solver that computes the actual sets.
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4.1 Input Language

The input language is a simple while-language, consisting of assignments, block
statements and if- and while-statements. We use a simple language because we
do not want to wrestle with a large language but instead show the concept of
how a static program analysis is implemented.

Statements stmt ::= var
lbl
= expr;

| iflbl(term) stmt else stmt
| whilelbl(term) stmt
| {stmt∗}

Programs program ::= stmt+

lbl ranges over the natural numbers and is unique for each statement. We
do not annotate block statements since they are just used to group multiple
statements.

To simplify our analysis, we impose the restriction that all expressions, expr,
must be free from side-effects. Since removing side-effects from expressions is
a simple and common program transformation, this restriction is reasonable to
make.

4.2 Rules of the Analysis

We now consider the constraint-generation part of the analysis and start by
defining the collections of equations that are generated. These equations char-
acterize the reaching information in the analyzed program.

Equations Π ::= ∅
| Entry(lbl) = Σ
| Exit(lbl) = Σ
| Π ∧ Π

(1)

∅ is the empty collection of equations. Entry(lbl) = Σ and Exit(lbl) = Σ
define the entry and exit sets of the statement annotated with lbl to be equal
to the set expression Σ. We let ∧ be the conjunction operator that joins two
collections of equations.

The set expressions are used to represent entry and exit sets.

Set expressions Σ ::= ∅
| (var, lbl)
| Entry(lbl)
| Exit(lbl)
| Σ ∪ Σ
| Σ - Σ

(2)

∅ is the empty set (this symbol is overloaded without risk of confusion). (var, lbl)
is the singleton set consisting of a single reaching assignment. Entry(lbl) and



54 Tobias Gedell

Exit(lbl) refer to the entry and exit sets of the statement annotated with lbl. ∪
and - are the union and difference operators.

The rules of the analysis are of the form ℓ0 ⊢ s ⇓ ℓ1 : Π, where s
is the statement under consideration, ℓ0 the label of the statement executed
before s, ℓ1 the label of the last executed statement in s, and Π the equation
characterizing the reaching information of the statement s.

Intuitively, we need the label of the statement executed before s because we
use its exit set when analyzing s. We also need to know the label of the last
executed statement in s (which will often be s itself) because the statement
executed after s needs to use the right exit set.

In the assignment rule we know that the reaching assignments in the entry
set will be exactly those in the exit set of the preceding statement.

Assign

ℓ0 ⊢ x
ℓ1
= e; ⇓ ℓ1 : Entry(ℓ1) = Exit(ℓ0) ∧

Exit(ℓ1) = (x, ℓ1) ∪ (Entry(ℓ1) −
⋃

ℓ∈lbl

(x, ℓ))

This is expressed by the equation Entry(ℓ1) = Exit(ℓ0). For the exit set,
we know that all previous assignments of x will no longer be reaching. The
assignments of all other variables will remain untouched. We therefore let the
exit set be equal to the entry set from which we have first removed all previous
assignments of x and then added the assignment (x, ℓ1). This is expressed by
the equation Exit(ℓ1) = (x, ℓ1) ∪ (Entry(ℓ1) −

⋃
ℓ∈lbl(x, ℓ)).

The rule for if-statements is defined as follows.

If

ℓ0 ⊢ s0 ⇓ ℓ2 : Π0 ℓ0 ⊢ s1 ⇓ ℓ3 : Π1

ℓ0 ⊢ ifℓ1(e) s0 else s1 ⇓ ℓ1 : Π0 ∧ Π1 ∧ Entry(ℓ1) = Exit(ℓ0) ∧
Exit(ℓ1) = Exit(ℓ2) ∪ Exit(ℓ3)

The entry set is equal to the exit set of the preceding statement, which is
expressed by the equation Entry(ℓ1) = Exit(ℓ0). When analyzing the branches
s0 and s1, we use l0 as the label of the preceding statement since it is important
that they, when referring to the exit set of the preceding statement, use Exit(l0)
and not the exit set of the if-statement.

From the branches, we get the collections of generated equations Π0 and Π1,
along with the labels l2 and l3, which are the labels of the last executed state-
ments. Since we do not know which branch is going to be taken, we approximate
and assume that both branches can be taken. The exit set of the if-statement
will, therefore, be equal to the union of the exit sets of the branches, expressed
by the equation Exit(ℓ1) = Exit(ℓ2) ∪ Exit(ℓ3).

The rule for while-statements is defined as follows.

While

ℓ1 ⊢ s ⇓ ℓ2 : Π0

ℓ0 ⊢ whileℓ1(e) s ⇓ ℓ1 : Π0 ∧ Entry(ℓ1) = Exit(ℓ0) ∪ Exit(ℓ2) ∧
Exit(ℓ1) = Entry(ℓ1)
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For the entry set, we include the exit set of the preceding statement, but also the
exit set of the last executed statement in the loop body. We do this because there
are two execution paths leading to the while loop. The first is from the statement
executed before the loop, and the second from executing the loop body. For the
exit set, we do not know if the body was executed or not. We, therefore, want
the exit set to be the union of the entry set of the while-statement and the exit
set of the last executed statement in s. Since this is the exact definition of the
entry set, we let them be equal.

When analyzing the body of the loop we must once again approximate. The
first time s is executed, it should use the exit set of l0, since that is the statement
last executed. The second time, and all times after that, it should use the exit
set of l1, since the body of the while loop is the statement last executed. We
approximate this by not separating the two cases and always use l1 as the label
of the preceding statement.

We do not have a special rule for programs. Instead, we treat a program as
a block statement and use the following rules for sequential statements.

Seq-Empty

ℓ0 ⊢ {} ⇓ ℓ0 : ∅

Seq

ℓ0 ⊢ s1 ⇓ ℓ1 : Π1 · · · ℓn−1 ⊢ sn ⇓ ℓn : Πn

ℓ0 ⊢ {s1 . . . sn} ⇓ ℓn : Π1 ∧ · · · ∧ Πn

5 Embedding the Analysis into the Prover

5.1 Encoding the Datatypes

In order to encode Σ, Π, and labels, we need to declare the used types. We
declare VarSet, which is the type of Σ, Equations, which is the type of Π and
Label, which is the type of labels. The type of variable names, Quoted, is
already defined in the KeY system.

In the constructors for Σ, defined by (2), we have, for convenience, replaced
the difference operator with the constructor CutVar, where CutVar(s, x) de-
notes the set expression s−

⋃
ℓ∈lbl(x, ℓ). The constructors are defined as function

symbols by the following code.

VarSet Empty;

VarSet Singleton(Quoted, Label);

VarSet Entry(Label);

VarSet Exit(Label);

VarSet Union(VarSet, VarSet);

VarSet CutVar(VarSet, Quoted);

The constructors for Π, defined by (1), are defined analogously to the ones
for Σ.
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Equations None;

Equations EntryEq(Label, VarSet);

Equations ExitEq(Label, VarSet);

Equations Join(Equations, Equations);

The KeY system does not feature a unique labeling of statements so we need
to annotate the statements ourselves. In order to generate labels we define Zero
and Succ, with which we can easily enumerate all needed labels. The first label
is Zero, the second Succ(Zero), and so on.

Label Zero;

Label Succ(Label);

Since the rules of the analysis use the exit set of the preceding statement, the
very first statement of a program (which does not have any preceding statement)
requires special treatment. We define the label Start which is exclusively used
as the label of the (non-existing) statement preceding the first statement. When
solving the equations we let the exit set of this label be the empty set.

Label Start;

Since one can only attach formulas to embedded Java programs, we need to
wrap our parameters in a predicate. The parameters we need are exactly those
used in our judgments. We wrap the label of the preceding statement, ℓ0, the
label of the last executed statement, ℓ1, and the collection of equations, Π, in a
predicate called wrapper (we do not need to include the statement s since the
wrapper is attached to it). In the predicate, we also include two labels, needed
for the generation of the labels used to annotate the statements. The included
labels are the first unused label before annotating the statement and the first
unused label after annotating the statement. The wrapper formula looks as
follows.

wrapper(Label, Label, Equations, Label, Label);

5.2 Encoding the Rules

Before implementing the rules of our analysis as taclets, we declare the variables
that we want to use in our taclets as follows.

program variable #x;

program simple expression #e;

program statement #s, #s0, #s1;

Equations pi0, pi1, pi2;

Label lbl0, lbl1, lbl2, lbl3, lbl4, lbl5;

Quoted name;

The rules for empty block statements is implemented as a taclet matching
an empty block statement, written as <{{}}>, and a wrapper formula where the
first argument is equal to the second argument, the collection of equations is
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empty, and the fourth argument is equal to the fifth. The action that should
be performed when this rule is applied is that the current proof branch should
be closed. This is the case because the Seq-Empty rule has no premises. The
complete taclet is defined as follows.

rdef_seq_empty {

find (==> <{{}}>(wrapper(lbl0, lbl0, None, lbl1, lbl1)))

close goal

};

The rule for non-empty block statements is a bit more involved. The rule
handles an arbitrary number of statements in a block statement. This is, how-
ever, hard to express in the taclet language. Instead, we modify the rule to
separate the statements into the head and the trailing list. This is equivalent
to the original rule except that a block statement needs one application of the
rule for each statement it contains. After being modified, the rule is defined as
follows, where we let s̄2 range over lists of statements.

Seq-modified

ℓ0 ⊢ s1 ⇓ ℓ1 : Π1 ℓ1 ⊢ {s̄2} ⇓ ℓ2 : Π2

ℓ0 ⊢ {s1 s̄2} ⇓ ℓ2 : Π1 ∧ Π2

When implemented as a taclet, we let it match the head and the tail of the
list, written as <{.. #s1 ...}>. In this pattern, #s1 matches the head and
the dots, .. ...1, match the tail. We let it match a wrapper formula containing
the necessary labels together with the conjunction of the two collections of
equations Π1 and Π2. For each premise, we create a proof branch by using the
replacewith action. Note how the two last labels are threaded in the taclet.

rdef_seq {

find (==> <{.. #s1 ...}>(wrapper(lbl0, lbl2, Join(pi1, pi2),lbl3,lbl5)))

replacewith (==> <{#s1}>(wrapper(lbl0, lbl1, pi1, lbl3, lbl4)));

replacewith (==> <{.. ...}>(wrapper(lbl1, lbl2, pi2, lbl4, lbl5)))

};

In the rule for assignments, we must take care of the annotation of the
assignment. Since we know that the fourth argument in the wrapper predicate
is the first free label, we bind lbl1 to it. We then use lbl1 to annotate the
assignment. Since we have now used that label, we increment the counter of the
first free label. We do that by letting the fifth argument be the successor of lbl1
(the fifth argument in the wrapper predicate is the first free label after annotated
the statement). Because of implementation details in KeY, we need to use the
varcond construction to bind name to the name of the variable matching #x.

rdef_assign {

find (==> <{#x = #e;}>

1The leading two dots match the surrounding context, which for our analysis is known to
always be empty.
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(wrapper(lbl0, lbl1,

Join(EntryEq(lbl1, Exit(lbl0)),

ExitEq (lbl1, Union(Singleton(name, lbl1),

CutVar(Entry(lbl1), name)))),

lbl1, Succ(lbl1))))

varcond (name quotes #x)

close goal

};

The taclet for if-statements is larger than the previously shown taclets, but
since it introduces no new concepts, it should be easily understood.

rdef_if {

find (==> <{if(#e) #s0 else #s1}>

(wrapper(lbl0, lbl1,

Join(Join(pi0, pi1),

Join(EntryEq(lbl1, Exit(lbl0)),

ExitEq (lbl1, Union(Exit(lbl2), Exit(lbl3))))),

lbl1, lbl5)))

replacewith (==> <{#s0}>(wrapper(lbl0, lbl2, pi0, Succ(lbl1), lbl4)));

replacewith (==> <{#s1}>(wrapper(lbl0, lbl3, pi1, lbl4, lbl5)))

};

This is also the case with the taclet for while-statements and it is, therefore,
left without further description.

rdef_while {

find (==> <{while(#e) #s}>

(wrapper(lbl0, lbl1,

Join(pi0, Join(EntryEq(lbl1, Union(Exit(lbl0),Exit(lbl2))),

ExitEq (lbl1, Entry(lbl1)))),

lbl1, lbl3)))

replacewith (==> <{#s}>(wrapper(lbl1, lbl2, pi0, Succ(lbl1), lbl3)))

};

5.3 Experiments

We have tested the implementation of our analysis on a number of different
programs. For all tested programs the analysis computed the correct entry
and exit sets, which is not surprising since there is a one-to-one correspondence
between the rules of the analysis and the taclets implementing them.

As an example, consider the minimal program a = 1, consisting of only one
assignment. We embed this program in a formula, over which we existentially
quantify the equations, s, the label of the last executed statement, lbl0, and
the first free label after annotated the program, lbl1, giving us the following.

ex lbl0:Label. ex s:Equations. ex lbl1:Label.

<{ a = 1; }>wrapper(Start, lbl0, s, Zero, lbl1)
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When applying the rules of the analysis, the first thing that happens is
that lbl0, s, and lbl1 are instantiated with meta variables. This is done by a
built-in rule for existential quantification. The resulting formula is the following
where L0, S and L1 are meta variables.

<{ a = 1; }>wrapper(Start, L0, S, Zero, L1)

The KeY system will succeed in automatically applying the embedded rules
since the analysis is complete and, therefore, works for all programs. Being
complete is an essential property of all program analyses and for our analysis it
is easy to see that there exists a set of equations which characterize the reaching
information for any program.

When the proof has been created, we fetch the instantiations of all meta
variables, which for our example are the following.

{

S : Equations =

Join(

EntryEq(L0, Exit(Start)),

ExitEq (L0, Union(Singleton(a, L0), CutVar(Entry(L0), a)))),

L0 : Label = Zero,

L1 : Label = Succ(L0)

}

These constraints are solved by a stand-alone constraint solver. Recall that
the analysis consists of two parts. The first part, which is done by the KeY
system, is to collect the constraints. The second part, which is done by the
constraint solver, solves the constraints.

The constraint solver extracts the equations from the constraints and solves
them yielding the following sets, which is the expected result.

Entry_0 = {}

Exit_0 = {(a, 0)}

6 Conclusions

It is interesting to see how well suited an interactive theorem prover such as
the KeY system is to embed the reaching definitions analysis in. One reason
for this is that the rules of the dynamic logic are, in a way, not that different
from the rules of the analysis. They are both syntax-driven, i.e., which rule to
apply is decided by looking at the syntactic form of the formula or statement
under consideration. This shows that theorem provers with free variables or
meta variables can be seen as not just theorem provers for a specific logic but,
rather, as generic frameworks for syntactic manipulation of formulas. Having
this view, it is not strange that we can disregard the usual semantic meaning of
the tactic language, and use it for whatever purpose we want.
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The key feature that allows us to implement our analysis is the mechanism
of meta variables, that we use to create a bi-directional flow of information.
Using meta variables, we can synthesize almost any type of information. We
are, however, limited in what computation we can do on the information. So
far, we cannot do any computation on the information while constructing the
proof. We cannot, for example, do any simplification of the set expressions. One
possible way of overcoming this would be to extend the constraint language to
not just include syntactic constraints but also semantic constraints.

When it comes to the efficiency of the implementation of the constraint-
generation part, it is a somewhat open issue. One can informally argue that the
overhead of using the KeY system, instead of writing a specialized tool for the
analysis, should be a constant factor. It might be the case that one needs to
optimize the constraint solver of KeY to handle unification constraints in a way
that is more efficient for the analysis. An optimized constraint solver should be
able to handle all constraints, generated by the analysis, in a linear way.

7 Future Work

The work presented in this paper is a starting point and opens up for a lot of
future work including the following.

• Try different theorem provers to see how well the method presented in this
paper works in combination with other theorem provers.

• Further analyze the overhead of using a theorem prover to implement
program analyses.

• Modify the calculus of the KeY system to make use of the information
computed by the program analysis. We need to identify where the result of
the analysis can help and how the rules of the calculus should be modified
to use it. It is when this is done that the true potential of the integration
is achieved.

• Investigate other analyses. We implemented the reaching definitions anal-
ysis because it is a well known and simple analysis that is well suited
for illustrating our ideas. Now that we have shown that it is possible
to implement a static program analysis in the KeY system, it is time to
look for analyses that would benefit the KeY system. Among the possible
candidates for this are:

– An analysis that computes the possible side-effects of a method. For
example what objects and variables that may change.

– A path-based flow analysis helping the KeY system to resolve aliasing
problems.

– A flow analysis computing the set of possible implementation classes
of objects. This would help reducing the branching for abstract types
like interfaces and abstract classes



Embedding Static Analysis into Tableaux and Sequent based Frameworks 61

– A null pointer analysis that identifies object references which are not
equal to null. This would help the system which currently has to
always check whether a reference is equal to null before using it.

A limitation of the sequent calculus in the KeY system is that the unification
constraints, used for instantiating the meta variables, can only express syntac-
tic equality. This is a limitation since it prevents the system from doing any
semantic simplification of the synthesized information. If it was able to perform
simplification of the information while it is synthesized, not only could it make
the whole process more efficient, but also guide the construction of the proof to
a larger extent. Useful extensions of the constraint language are, for example,
the common set operations: test for membership, union, intersection and dif-
ference. In a constraint tableaux setting, the simplification of these operations
could take place in the sink objects associated with each node in the proof.

A more general issue that is not just specific to the work presented in this
paper is to what degree static program analysis and theorem proving should be
integrated. The level of integration can vary from having a program analysis
analyzing a program and passing the results to a theorem prover, to having a
general framework in which program analysis and theorem proving are woven
together. The former kind of integration is no doubt the easiest to implement
but also the most limited. The latter is much more dynamic and allows for
an incremental exchange of information between the calculus of the prover and
program analysis.
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Verification by Parallelization of Parametric Code

Tobias Gedell Reiner Hähnle

Abstract

Loops and other unbound control structures constitute a major bottle-
neck in formal software verification, because correctness proofs over such
control structures generally require user interaction: typically, induction
hypotheses or invariants must be found or modified by hand. Such in-
teraction involves expert knowledge of the underlying calculus and proof
engine. We show that one can replace interactive proof techniques, such
as induction, with automated first-order reasoning in order to deal with
parallelizable loops. A loop can be parallelized, whenever the execution of
a generic iteration of its body depends only on the step parameter and not
on other iterations. We use a symbolic dependence analysis that ensures
parallelizability. This guarantees soundness of a proof rule that transforms
a loop into a universally quantified update of the state change information
effected by the loop body. This rule makes it possible to employ automatic
first-order reasoning techniques to deal with loops. The method has been
implemented in the KeY verification tool. We evaluated its applicability
with representative case studies from the Java Card domain.

1 Introduction

The context of this paper is formal software verification of object-oriented pro-
grams. The target programs are executable Java programs (not abstract pro-
grams) and we want to prove complex functional properties of these. There
are a number of software verification systems that target Java and related pro-
gramming languages [BLS05, BHS07, BRL03, MPM05, PHM99, Ste05]. All of
these systems are semi-automatic at best. The reason is that the emergence of
undecidable predicates is typical when proving correctness for the combination
of data structures of unbounded size and of control structures that can lead
to an unbounded number of execution steps. Typical examples of the former
include integers, lists (arrays), trees. The most important representatives of the
latter are loops, recursive method calls, and concurrent processes. All of them
are present in Java-like languages.

If we do not want to abstract away from real Java programs as in software
model checking [Hol02] or trade off verification for mere bug finding [FLL+02],
then the inherent limitations of computability do not allow a complete, uniform
deduction system for program verification. Even though it seems that the calculi
used for program verification are practically complete in the sense that complex,
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realistic examples can be handled [BHS07, Bre06, JMR04] without encountering
incompleteness phenomena, this is not enough. To see why, let us look at an
example.

Example 1.1 (Array reversal)
The following loop reverses the elements of the int array a:

int half = a.length / 2 - 1;

for (int i = 0; i <= half; i++) {

int tmp = a[i];

a[i] = a[a.length - 1 - i];

a[a.length - 1 - i] = tmp;

}

A formal specification can be given in first-order logic as follows:

Precondition: a 6
.
= null

Postcondition: ∀j.(0 ≤ j < a.length → a[j]
.
= \old(a)[a.length − 1 − j])

The keyword \old indicates that the value a had before the execution is referred
to. �

What are the options to prove total correctness of this loop with respect
to its contract? Finite unwinding is impossible and abstraction has difficulties
to record that the value a.length depends on a. The standard approach is to
use one of two general-purpose mechanisms for dealing with unbounded control
structures, invariants or induction. In the first case, one would establish that
the loop preserves a suitable invariant property I, which must be strong enough
to imply the postcondition. Termination of the loop is proven separately (and
is trivial for this example). Alternatively, an induction argument over i would
typically establish that the loop reverses all array positions. The problem is
that both, a suitable invariant and a suitable induction hypothesis, are not
straightforward to derive from the postcondition: it is necessary to introduce a
new variable k for the index up to which the array has been reversed already,
k must have appropriate bounds, the precondition must be included, etc. In
general, the postcondition might not be given (for example, if the task is to
derive the specification from the code). In this case, it is even more difficult
to come up with a suitable invariant or induction hypothesis. In addition,
loop rules in realistic imperative languages [BSS05] are very complex. User
interaction involves a high amount of technical knowledge and is thus extremely
expensive.

There is a large body of work on heuristically guided inductive theorem
proving, but most of it is done in the context of functional programming [BJ88,
BBHI05]. Existing work on automatic synthesis of loop invariants in impera-
tive programs [LL05, RCK05] is defined only for an abstract while-language.
A recent divide-and-conquer technique for decomposition of induction proofs
[OW05] works for a larger fragment of Java, but it is targeted at simplifying
user interaction rather than eliminating it.
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Main Contributions

The contribution of this paper is to present a new verification technique that
relies neither on abstraction, nor on invariants, nor on induction. It is comple-
mentary to the work cited above in so far as our goal is to recognize situations
where complex invariants can be avoided altogether.

The key insight (illustrated by means of Example 1.1) is that the swap
operations realized in the loop body can be executed independently of each
other: the assignment to a[i] and the value of a[a.length - 1 - i] do not
depend on any a[j] and a[a.length - 1 - j] with i 6

.
= j provided that i and j

are within the bounds specified in the guard of the loop.

Now, a new way to prove correctness of the loop goes as follows: first compute
the effect of a generic iteration of the loop body parameterized with i; second,
prove that there are no dependencies between different iterations in the loop
range; third, generalize the effect of the loop body over all values that the
parameter i takes on in the loop range; and fourth, prove that the postcondition
is implied by the loop. Importantly, the last step involves no induction, but
automatable first-order search stratagems such as quantifier elimination and
term rewriting.

Obviously, verification by parallelization of parametric code is an incomplete
verification technique for loops, because not all loops are parallelizable. On
the other hand, it is not an exotic special case either: from an analysis of
the unchanged code of several real Java Card programs we concluded that
parallelizable loops occur naturally and relatively frequently, see Section 10. As
we show in Section 11, verification by parallelization is not restricted to loops,
but can be applied whenever a non-linear program is composed of parametric
pieces of code, for example, in recursive calls and concurrent processes. In
addition, the current trend towards multi-core processors will result in more
code being written in such a way that it is parallelizable. Therefore, verification
by parallelization is a relevant technique for increasing the degree of automation
in software verification.

The most important aspect of verification by parallelization is that it is a
highly automatable verification technique. First, because the computation of the
effect (i.e., the strongest postcondition relative to a given precondition) U(i) of a
piece of code p(i) parameterized by i is done automatically. Even the choice of
the parameter i is automatic and guided by heuristics. The details are given in
Sections 4 and 5. Second, the effect of some non-linear parameterized code (such
as a loop with body p(i)) is represented in form of a universally quantified state
update, say, \for int I; {i := I}{ U(i)}. Therefore, it can be further processed
during the remaining verification proof by employing first-order reasoning, see
Section 8.

Soundness of the universal quantification step is ensured by an automatic
symbolic dependence analysis described in Sections 6 and 7. This analysis is
executed not directly on the code p(i), but on the simplified and normalized
effect U(i) computed by symbolic execution before. This feature makes our
approach robust, because the success of the dependence analysis does not rely
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on any syntactic restrictions of p(i). A further robustness feature is that our
dependence analysis does not simply fail in case when dependencies are detected,
but yields a symbolic constraint that is sufficient for dependencies not to occur
and that can be used elsewhere in the verification attempt, see Section 9.

In the following section, we collect a number of technical notions needed
later on. In Section 3, we walk informally through the method guided by an
example. The remaining sections then give the technical details.

2 Basic Definitions

The platform for our experiments is the KeY tool [BHS07], which features an
interactive theorem prover for formal verification of sequential Java programs.

2.1 Dynamic Logic for Java Card

In KeY the target program to be verified and its specification are both modeled
in an instance of a dynamic logic (DL) [HKT00] calculus called Java DL [Bec01].
Java DL extends other variants of DL used for theoretical investigations or
verification purposes, because it handles such phenomena as side effects, aliasing,
object types, exceptions, and finite integer types. Java DL fully axiomatizes
the Java Card programming language [Jav03] which contains all Java features
minus multi-threading, floating point types, and dynamic class loading. It has
also some features that Java does not have, but they are not addressed in this
article.

Deduction in the Java DL calculus is based on symbolic program execution
and simple program transformations and so is close to a programmer’s under-
standing of Java. It can be seen as a modal logic with a modality 〈p〉 for every
program p, where 〈p〉 refers to the final state (if p terminates normally) that is
reached after executing p.

The program formula 〈p〉φ expresses that the program p terminates in a state
in which φ holds without throwing an exception. A formula φ → 〈p〉ψ is valid
if for every state S satisfying precondition φ a run of the program p starting in S
terminates normally, and in the terminating state the postcondition ψ holds.

The programs occurring in Java DL formulas are executable Java code.
Each rule of the Java DL calculus specifies how to execute symbolically one
particular statement, possibly with additional restrictions. When a loop or
a recursive method call is encountered, it is in general necessary to perform
induction over a suitable data structure. In this paper we show how induction
can be avoided in the case of parallelizable loops.

2.2 State Updates

In Java (as in other object-oriented programming languages), different object
type variables may refer to the same object. This phenomenon, called aliasing,
causes difficulties for the handling of assignments in a calculus for Java DL.
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For example, whether or not the formula o1.f
.
= 1 holds after (symbolic) exe-

cution of the assignment o2.f = 2;, depends on whether o1 and o2 refer to the
same object. Therefore, Java assignments cannot be symbolically executed by
syntactic substitution without causing excessive branching. In the Java DL

calculus a different solution is used, based on the notion of (state) updates.

Definition 2.1 Atomic updates are of the form loc := val, where val is a logi-
cal term without side effects and loc is either (i) a program variable v, or (ii) a
field access o.f, or (iii) an array access a[i]. Updates may appear in front of
any formula, where they are surrounded by curly brackets for easy parsing. The
semantics of {loc := val}φ is the same as that of 〈loc=val;〉φ.

Changes of the computation state can be represented with the help of up-
dates. For example, the update {loc := val}φ represents all states in which the
formula φ holds after the value of loc has been changed to val. In a some-
what loose manner we use updates to represent states, for example, the update
{loc := val} is used to represent an arbitrary state, where the value of loc is
val.

Definition 2.2 General updates are defined inductively based on atomic up-
dates. If U and U ′ are updates then so are: (i) U ,U ′ (parallel composition),
(ii) U ;U ′ ( sequential composition), (iii) \if (b) {U}, where b is a quantifier-
free formula ( conditional execution), (iv) \for T s; U(s), where s is a vari-
able over a well-ordered type T and U(s) is an update with occurrences of s
(quantification), (v) {U}U ′ application.

The semantics of sequential, conditional, and application updates is obvi-
ous; the meaning of a parallel update is the simultaneous application of all its
constituent updates except when two left hand sides refer to the same location:
in this case the syntactically later update wins. This models natural program
execution flow. The semantics of \for T s; U(s) is the parallel execution of
all updates in

⋃
x∈T{s :=x;U(s)}. As for parallel updates, a last-win clash-

semantics is in place: the maximal1update with respect to the well-order on T
and the syntactic order within each U(s) wins.

The restriction that right-hand sides of updates must be side effect-free is not
essential: by introducing fresh local variables and symbolic execution of complex
expressions the Java DL calculus rules normalize arbitrary assignments so that
they meet the restrictions of updates. A full formal treatment of updates is in
[Rüm06], see also [BHS07].

Sequential composition of updates is automatically transformed into parallel
composition in KeY and we will therefore mostly not consider it further.

3 Outline of the Approach

Let us look at the following example:

1Well-orders are usually defined with respect to minimal elements. We use the dual defi-
nition here, because it is more natural in our setting.
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for (int i = 1; i < a.length; i++)

i f (c != 0) a[i] = b[i+1];

e l se a[i] = b[i-1];

In a first step, the loop initialization expression is transformed out of the loop
and symbolically executed. The reason is that the initialization expression might
be complex and have side effects. This results in a state S = {i := 1}. The
remaining loop now has the form: for (; i < a.length; i++) ...

We proceed to symbolically execute the loop body, the step expression, and
the guard for a generic value of i. In order to do this correctly, we must eliminate
from the current state all locations that can potentially be modified in the body,
step, or guard. In Section 4 we describe an algorithm that approximates such
a set of locations rather precisely. Applied to the present example we obtain i

and a[i] as modifiable locations. Consequently, generic execution of the loop
body, step, and guard starts in the empty state. Note that the set of modifiable
locations does not include, for example, c. This is important, because if S
contains, say, c := 1, we would start the execution in the state {c := 1} and the
resulting state would be much simplified.

In our example, symbolic execution of one loop iteration starting in the
empty state gives S′ = {i := i + 1, \if (c 6

.
= 0) {a[i] := b[i+1]}, \if (c

.
=

0) {a[i] := b[i-1]}}, where the step and guard expressions were executed as
well.

The next step is to check whether the state update S′ resulting from the
execution of the generic iteration contains dependencies that make it impossible
to represent the effect of the loop as a quantified update. For S′ this is the case if
and only if c is 0 and a and b are the same array. In this case, the body amounts
to the statement a[i] = a[i-1] which contains a data dependence that cannot
be parallelized. All other dependencies can be captured by parallel execution of
updates with last-win clash-semantics. The details of the dependence analysis
are explained in Section 6 and Section 7. In the example it results in a logical
constraint C that, among other things, contains the disjunction of c 6

.
= 0 and

a 6
.
= b. A further logical constraint D strengthening C is computed which, in

addition, ensures that the loop terminates normally. In the example, normal
termination is ensured by a and b not being null and b having enough elements,
that is, b.length > a.length.

At this point the proof is split into two cases using cut formula D. Under
the assumption D the loop can be transformed into a quantified update. If D is
not provable, then the loop must be also tackled with a conventional induction
rule, but one may use the additional assumption ¬D, which may well simplify
the proof.

For the sake of illustration assume now S and S′ both contain {c := 1} and
the termination constraint in D holds. In this case, we can additionally simplify
S′ to {c := 1, i := i + 1, a[i] := b[i+1]}.

In the final step we synthesize from (i) the initial state S, (ii) the effect of a
generic execution of an iteration S′ and (iii) the guard, a state update, where the
loop variable i is universally quantified. The details are explained in Section 8.
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The result for the example in somewhat simplified manner is as follows:

\for int n;

{i :=n+ 1}

{\if (i ≥ 1 ∧ i < a.length) {c := 1, i := i + 1, a[i] := b[i+1]}}

Here we make use of an update applied to an update. The variable n holds
the iteration number, i.e., 0 for the first iteration, 1 for the second, and so on.
For each iteration we need to assign the loop variable its value. This is done by
the update {i :=n+1}. We apply this update to the guarded update which has
the effect that all occurrences of i in non-update positions (guard, arguments,
right-hand sides) are replaced by n+ 1. The resulting update is:

\for int n;

{\if (n+ 1 ≥ 1 ∧ n+ 1 < a.length)

{c := 1, i :=n+ 2, a[n+ 1] := b[n+ 2]}}

The for-expression is a universal first-order quantifier whose scope is an
update that contains occurrences of the variable n (see Def. 2.2 and [Rüm06]).
Subexpressions are first-order terms that are simplified eagerly while symbolic
execution proceeds. first-order quantifier elimination rules based on skolemiza-
tion and instantiation are applicable, for example, for any positive value j such
that j < a.length we obtain immediately the update a[j] := b[j+1] by instanti-
ation. Proof search is performed by the usual first-order strategies without user
interaction.

4 Computing the Effect of a Generic Loop Iter-

ation

In this section we describe how we compute the state modifications performed
by a generic loop iteration. As a preliminary step we move the initialization
out of the loop and execute it symbolically, because the initialization expression
may contain side-effects. We are left with a loop consisting of a guard, a step
expression, and a body:

for (; guard; step ) body (1)

We want to compute the state modifications performed by a generic iteration
of the loop. A single loop iteration consists of executing the body, evaluating
the step expression, and testing the guard expression. This behavior is captured
in the following compound statement where dummy is needed, because Java ex-
pressions are not statements.
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body ; step ; boolean dummy = guard; (2)

We proceed to symbolically execute the compound statement (2) for a generic
value of the loop variable. This is quite similar to computing the strongest post
condition of a given program. Platzer [Pla04] has worked out the details of how
to compute the strongest post condition in the specific Java program logic that
we use and our methods are based on the same principles. Our method handles
the fragment of Java that the symbolic execution machinery of KeY handles,
which is Java Card [Jav03].

Let p be the code in (2). The main idea is to try to prove validity of the
program formula S〈p〉 fin, where fin is an arbitrary, but unspecified non-rigid
predicate that signifies when to stop symbolic execution. Complete symbolic
execution of p starting in state S eventually yields a proof tree whose open
leaves are of the form Γ → U fin for some update expression U . The predicate
fin cannot be shown to be true or false in the program logic. Therefore, after
all instructions in p have been executed, symbolic execution is stuck. At this
stage we extract two vectors ~Γ and ~U consisting of corresponding Γ and U from
all open leaf nodes. Different leaves correspond to different execution paths in
the loop body.

Example 4.1 Consider the following statement p:

i f (i > 2) a[i] = 0 e lse a[i] = 1; i = i + 1;

After the attempt to prove 〈p〉 fin becomes stuck there are two open leaves:

V ∧ i > 2 → {a[i] := 0, i := i + 1} fin
V ∧ i 6> 2 → {a[i] := 1, i := i + 1} fin

where V stands for a 6
.
= null ∧ i ≥ 0 ∧ i < a.length. We extract the following

vectors:

~Γ ≡ 〈V ∧ i > 2, V ∧ i 6> 2〉

~U ≡ 〈{a[i] := 0, i := i + 1}, {a[i] := 1, i := i + 1}〉 (3)

�

Symbolic execution can become stuck at a leaf containing a program in three
ways:

1. The program has been fully executed and only an update and the formula
fin remain. This is what we call a success leaf. The effect of the program
was successfully transformed into a state update. Success leaves are always
of the form Γ → U fin.
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2. Abrupt termination caused by, for example, a thrown exception. In this
case the program cannot be transformed into a state update. We call this
a failed leaf.

3. The strategies for automatic symbolic execution were not strong enough to
execute all instructions in the program. This could possibly be remedied
by enabling more powerful and expensive strategies and restart symbolic
execution. If they are still not strong enough, we count the leaf as a failed
leaf.

If a failed leaf can be reached from the initial state, then our method cannot
handle the loop. We must, therefore, make sure that our method is only applied
to loops for which we have proven that no failed leaf can be reached. We
construct the vector ~F consisting of the path conditions Γ of all failed leaves
and let the negation of ~F become a condition that needs to be proven when
applying our method.

Example 4.2 In Example 4.1 we only showed the success leaves. When sym-
bolic execution becomes stuck, there are, in addition to the success leaves, failed
leaves of the following form:

a
.
= null → . . . fin

a 6
.
= null ∧ i < 0 → . . . fin

a 6
.
= null ∧ i 6< a.length → . . . fin

The first leaf corresponds to the case where a is null and using a throws
a null pointer exception. The second and third leaves correspond to the case
where i is outside a’s bounds and accessing a[i] throws an index out of bounds
exception. From the failed leaves we extract the following vector:

~F ≡ 〈a
.
= null, a 6

.
= null ∧ i < 0, a 6

.
= null ∧ i 6< a.length〉

�

Note that symbolic execution discards any code that cannot be reached. As a
consequence, an exception that occurs at a code location that cannot be reached
from the initial state will not occur in the leaves of the proof tree. This means
that our method is not restricted to code that cannot throw any exception,
which would be very restrictive.

So far we said nothing about the state in which we start a generic loop
iteration. Choosing a suitable state requires some care, as the following example
shows.

Example 4.3 Consider the following code:

c = 1;

i = 0;

for (; i < a.length; i++) {

i f (c != 0) a[i] = 0;

b[i] = 0; }
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At the beginning of the loop we are in state Sinit = {c := 1, i := 0}. It is tempt-
ing, but wrong, to start the generic loop iteration in this state. The reason is that
i has a specific value, so one iteration would yield {a[0] := 0, b[0] := 0, i := 1},
which is the result after the first iteration, not a generic one. The problem is
that Sinit contains information that is not invariant during the loop. Starting
the loop iteration in the empty state is sound, but suboptimal. In the example,
we would get {\if (c 6

.
= 0) {a[i] := 0}, b[i] := 0, i := i+1}, which is unneces-

sarily imprecise, since we know that c is equal to 1 during the entire execution
of the loop. �

We want to use as much information as possible from the state Sinit at the
beginning of the loop and only remove those parts that are not invariant dur-
ing all iterations of the loop. Executing the loop in the largest possible state
corresponds to performing dead code elimination. When we reach a loop of the
form (1) in state Sinit we proceed as follows:

1. Execute boolean dummy = guard; in state Sinit and obtain S. We need to
evaluate the guard since it may have side effects. Evaluation of the guard
might cause the proof to branch, in which case we apply the following steps
to each branch. If our method cannot be applied to one of the branches
we backtrack to state Sinit and use the standard rules to prove the loop.
If the guard evaluates to false, we skip the loop and proceed using the
standard rules.

2. Compute the vectors ~Γ, ~U and ~F from (2) starting in state S.

3. Obtain S′ by removing from S all those locations that are modified in
a success leaf. This is done as follows: for each modified location in
S, add an update of the location to itself in parallel to the updates in
S. They are added syntactically after all updates in S and, therefore,
the clash-semantics of updates ensures that the previous assignments to
the modified locations in S are canceled. More formally, S′ is defined
as follows: S′ = S,

⋃
l∈mod(~U ,S){l := l}, where mod(~U ,S) is the set of

locations in S whose assigned term in ~U differs from its assigned term in
S. How to compute this set is discussed below.

4. If S′ = S then stop; otherwise let S become S′ and goto Step 2.

The algorithm terminates since the number of locations that can be removed
from the initial state is bound both by the textual size of the loop2and, in case
the state does not contain any quantified update, the size of the state itself. The
final state of this algorithm is a greatest fixpoint containing as much information
as possible from the initial state S. Let us call this final state Siter.

2Including the size of any method called by the loop.
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Example 4.4 Example 4.3 yields the following sequence of states:

Round Start state State modifications New state
1 {c := 1, i := 0} {a[0] := 0, b[0] := 0, i := 1} {c := 1, i := i}3

2 {c := 1, i := i} {a[i] := 0, b[i] := 0, i := i+1} {c := 1, i := i}

�

Computing the set mod(~U ,S) can be difficult. Assume S contains a[c] := 0

and ~U contains a[i] := 1. If i and c can have the same value then a[c] should
be removed from S, otherwise it is safe to keep it. In general it is undecidable
whether two variables can assume the same value. A similar situation occurs
when S contains a.f := 0 and ~U contains b.f := 1. If a and b are references to
the same object then a.f must be removed from the new state. These issues are
handled by using a dependence analysis to compute mod(~U ,S). The details of
how this is done are described in Section 7.

5 Loop Variable and Loop Range

For the dependence analysis and for creating the quantified state update we
need to identify a loop variable and the loop range. The requirement we have
on a loop variable is that it must, in each success leaf, be updated with the same
step function by an unguarded update.

When deciding whether a particular variable i is a possible loop variable,
we look for a function step such that i := step(i) is found in each update U ∈ ~U .

Remember that ~U contains the updates from all success leaves. In KeY, finding
such a function is often not possible due to eager simplification performed on
updates. If, for example, for a specific leaf, the path condition contains i

.
= 0

the update i := i+ c will be simplified to i := c. This means that even if i := i+ c
is the step function of the loop it will not be found in all leaves. To handle this
we must take the path condition Γ into account. For each success leaf with path
condition Γ and update U we require that under the path condition, step(i)
is equal to the expression assigned to i by U . Formally, this is expressed by
Γ → step(i)

.
= Ui.

The step function describes the execution order of the loop iterations and
expresses how the loop variable changes between each loop iteration. For con-
structing the quantified state update we need to know the value that the loop
variable has in each iteration of the loop, that is, we need to have a function from
the number of an iteration to the value of the loop variable in that iteration.
This function is defined as iter(n) = stepn(start) where n is the number of the
iteration and start the initial value of the loop variable. In Java DL we cannot
write recursive expressions directly, so we have to rewrite the body of iter into
a non-recursive expression. This is in general hard, but whenever the loop vari-
able is incremented or decremented with a constant value in each iteration, it is

3The new state that gets computed is {c :=1,i :=0, i :=i} but is simplified to {c :=1,
i :=i}.
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easy to do. At present we impose this as a restriction: the step function must
have the form i + e, where i is the loop variable and e is invariant during loop
execution. Then one obtains the following definition: iter(n) = start + n ∗ e. It
would be possible to let the user provide the definition of iter allowing for more
complicated step functions to be handled. It would, however, come at the price
of making the method less automatic.

To identify the loop variable, we start with the set of variables occurring in
the loop and remove all those for which a step function cannot be found. After
this we might be left with more than one variable. Since we cannot, currently,
handle more than one loop variable we need to eliminate the other candidates.
If they are not eliminated they would cause data flow-dependencies that could
not be handled by our method. A candidate is eliminated by transforming
its expression into one which is not dependent on the candidate location. For
example, the candidate l, introduced by the assignment l = l + c;, can be
eliminated by transforming the assignment into l = init + n * c;, where init

is the initial value of l and n the number of the iteration.
To make the identification of loop variables more efficient we use a heuristic

that favors variables that occur in the loop guard (as loop variables often do)
and that are syntactically small (for example, i is considered smaller than a[l]).

Example 5.1 Consider the code in Example 4.1 which gives the vector in (3).
The only variable for which a step function can be found is i. It is, therefore,
identified as the loop variable. �

To determine the loop range we begin by computing the specification of the
guard in a similar way as we computed the state modifications of a generic itera-
tion in the previous section. We attempt to prove 〈boolean dummy = guard;〉 fin.
From the open leaves of the form Γ → {dummy := e, . . .} fin, we create the for-
mula GS which characterizes when the guard is true. Formally, GS is defined
as

∨
Γ(Γ ∧ e

.
= true). The formula GF characterizes when the guard is not

successfully evaluated. We let GF be the disjunction of all Γ′ from the open
leaves that are not of the form above.

Example 5.2 Consider the following guard g ≡ i < a.length. When all in-
structions in the formula 〈boolean dummy = g;〉 fin have been symbolically exe-
cuted, there are two success leaves:

a 6
.
= null ∧ i < a.length → {dummy := true} fin

a 6
.
= null ∧ i 6< a.length → {dummy := false} fin

From these we extract the following formula GS:

(a 6
.
= null ∧ i < a.length ∧ true

.
= true) ∨

(a 6
.
= null ∧ i 6< a.length ∧ false

.
= true)

After simplification of GS we obtain:

a 6
.
= null ∧ i < a.length .
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When the instructions have been symbolically executed, there is also a failed leaf
containing a

.
= null → . . . fin. From it we extract the formula GF ≡ a

.
= null.

�

The formula GRn characterizes when the iteration number n is within the loop
range. The following definition expresses that there exists an iteration where the
loop variable has the value iter(n) and, moreover, this iteration can be reached:

GRn ≡ n ≥ 0 ∧ {i := iter(n)}GS ∧ ∀m. 0 ≤ m < n→ {i := iter(m)}GS

It is important that the loop terminates, otherwise, our method would be
unsound. We, therefore, create a termination constraint GT that needs to be
proven when applying our method. The termination constraint expresses that
there exists a number n of iterations after which the guard formula evaluates to
false. The constraint GT is defined as:

GT ≡ ∃n. n ≥ 0 ∧ {i := iter (n)}¬GS

6 Dependence Analysis

Transforming a loop into a quantified state update is only possible when the
iterations of the loop are independent of each other. Two loop iterations are
independent of each other if the execution of one iteration does not affect the
execution of the other. According to this definition, the loop variable clearly
causes dependence, because each iteration both reads its current value and up-
dates it. We will, however, handle the loop variable by quantification. Therefore,
it is removed from the update before the dependence analysis is begun. The
problem of loop dependencies was intensely studied in loop vectorization and
parallelization for program optimization on parallel architectures. Some of our
concepts are based on results in this field [BCKT79, Wol89].

6.1 Classification of Dependencies

In our setting we encounter three different kinds of dependence; data flow-
dependence, data anti-dependence, and data output-dependence.

Example 6.1 It is tempting to assume that it is sufficient for independence of
loop iterations that the final state after executing a loop is independent of the
order of execution, but the following example shows this to be wrong:

for (int i = 0, sum = 0; i < a.length; i++) sum += a[i];

The loop computes the sum of all elements in the array a which is independent
of the order of execution, however, running all iterations in parallel gives the
wrong result, because reading and writing of sum collide. �
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Definition 6.1 Let SJ be the final state after executing a generic loop iteration
over variable i during which it has value J and let < be the order on the type
of i.

There is a data input-dependence between iterations K 6= L iff SK writes to
a location (i.e., appears on the left-hand side of an atomic update) that is read
(appears on the right hand side of an atomic update or as an argument or in a
guard of an update) in SL.We speak of data flow-dependence when K < L and
of data anti-dependence, when K > L.

There is data output-dependence between iterations K 6= L iff SK writes to
a location that is overwritten in SL.

Example 6.2 When executing the second iteration of the following loop, the
location a[1], which is modified by the first iteration, is read, indicating data
flow-dependence:

for (int i = 1; i < a.length; i++) a[i] = a[i - 1];

The following loop exhibits data output-dependence:

for (int i = 1; i < a.length; i++) last = a[i];

Each iteration assigns a new value to last. When the loop terminates, last has
the value assigned to it by the last iteration. �

Loops with data flow-dependencies cannot be parallelized, because each it-
eration must wait for a preceding one to finish before it can perform its compu-
tation.

In the presence of data anti-dependence swapping two iterations is unsound,
but parallel execution is possible provided that the generic iteration acts on
the original state before loop execution begins. In our translation of loops into
quantified state updates in Section 8 below, this is ensured by simultaneous
execution of all updates. Thus, we can handle loops that exhibit data anti-
dependence. The final state of such loops depends on the order of execution, so
independence of the order of executions is not only insufficient (Example 6.1)
but even unnecessary for parallelization.

Even loops with data output-dependence can be parallelized by assigning an
ordinal to each iteration. An iteration that wants to write to a location first
ensures that no iteration with higher ordinal has already written to it. This
requires a total order on the iterations. From the step function we extracted
the function iter, so this order can easily be constructed. The order is used in
the quantified state update together with a last-win clash-semantics to obtain
the desired behavior.

6.2 Comparison to Traditional Dependence Analysis

Our dependence analysis is different from most existing analyses for loop par-
allelization in compilers [BCKT79, Wol89]. The major difference is that these
analyses must not be expensive in terms of computation time, because the user
waits for the compiler to finish. Traditionally, precision is traded off for lower
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cost. Here we use dependence information to avoid using induction which comes
with an extremely high cost, because it typically requires user interaction. In
consequence, we strive to make the dependence analysis as precise as possible
as long as it is still fully automatic. In particular, our analysis can afford to try
several algorithms that work well for different classes of loops.

A second difference to traditional dependence analysis is that we do not
require a definite answer. When used during compilation to a parallel architec-
ture, a dependence analysis must give a Boolean answer as to whether a given
loop is parallelizable or not. In our setting it is useful to know that a loop is
parallelizable relative to satisfaction of a symbolic constraint. Then we can let
a theorem prover validate or refute this constraint, which typically is a much
easier problem than proving the original loop.

7 Implementation of the Dependence Analysis

Our dependence analysis analyzes a loop and symbolically computes a constraint
that characterizes when the loop is free of dependencies. The advantage of the
constraint-based approach is that we can avoid to deal with a number of very
hard problems such as aliasing: for example, locations a[i] and b[i] are the
same iff a and b are references to the same array, which can be difficult to
determine. Our analysis side-steps the aliasing problem simply by generating a
constraint saying that if a is not the same array as b then there is no dependence.
The validity of the generated constraint will then be decided by a theorem
prover.

When looking for dependencies in the loop we do not analyze the loop itself
but the state updates computed from the generic loop iteration. The dependence
analysis is, therefore, defined over updates. The binary function δ defined in
Table 1 takes two updates as arguments and computes a constraint that char-
acterizes the absence of data flow-dependence among its arguments. In the
definitions, we let locs(t) be the set of locations occurring in the term t and
slocs(loc) the set of locations occurring as arguments in loc as defined below:

slocs(v) = ∅
slocs(o.f) = locs(o)
slocs(a[i]) = locs(a) ∪ locs(i)

The computation of the dependence constraint of a loop uses the vectors ~Γ
and ~U extracted from the success leaves during symbolic execution of the loop
body. They were obtained as the result of a generic loop iteration in Section 4.
If the preconditions of two leaves are true for two different loop iterations we
need to ensure that the updates of the leaves are data flow-independent of each
other (Def. 6.1). Formally, if there exist two distinct iteration numbers k and
l and (possibly identical) leaves r and s, for which k < l, {i := iter(k)}Γr and
{i := iter(l)}Γs are true, then we need to ensure independence of Ur and Us.

We do this for all pairs of leaves and define the dependence constraint for
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Atomic updates

v := val δ loc := val′ =

{
true when v 6∈ (locs(val′) ∪ slocs(loc))
false otherwise

o1.f := val δ loc := val′ = ¬(
∨

o2.f∈(locs(val′)∪slocs(loc)) o1
.
= o2)

a[i] := val δ loc := val′ = ¬(
∨

b[j]∈(locs(val′)∪slocs(loc)) (a
.
= b ∧ i

.
= j))

General updates

U δ \if (b) {U ′} = ¬b ∨ U δ U ′

\if (b) {U} δ U ′ = ¬b ∨ U δ U ′

U δ \for T s; U ′(s) = ∀s. U δ U ′(s)
\for T s; U(s) δ U ′ = ∀s. U(s) δ U ′

U0, . . . ,Um δ U ′
0, . . . ,U

′
n =

∧
i,j Ui δU ′

j

Table 1: Computing dependence constraints among updates.

the entire loop as follows where GR is the loop range predicate and Ir,s,k,l is
defined as {i := iter(k)}Ur δ {i := iter(l)}Us.

C ≡
∧

r,s

∀k, l.

(
k < l ∧

(
GRk ∧GRl ∧

{i := iter(k)}Γr ∧ {i := iter(l)}Γs

))
→ Ir,s,k,l

The condition k < l ensures that we only capture data flow-dependence and
not data anti-dependence.

Example 7.1 Consider the loop from the array reversal Example 1.1. When
computing the effect of the generic loop iteration, we get one success leaf with
the following update:

{tmp := a[i], a[i] := a[a.length - 1 - i], a[a.length - 1 - i] := a[i]}

The dependence constraint I0,0,k,l is false only if a.length - 1 - iter(l)
.
=

iter(k) holds. In the example we have iter(n) = n, so this can be simplified to
a.length - 1

.
= k + l.

In order for C to be true we need to show that there are no iteration numbers
k and l, such that the above equality holds. From the guard specification we
obtain that the maximum iteration number is a.length / 2 - 1. The maximum
value of k + l is, therefore, a.length - 3 which is not equal to a.length - 1.
This makes C true and means that the loop does not contain any dependencies
that cannot be handled by our method. �

Computing mod(~U ,S)

In Section 4 we used mod(~U ,S) to compute the set of those locations in S whose
assigned term in U differs from its assigned term in S. This is very similar to an
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Atomic updates

v := val δo v := val′ = {v} when val 6
.
= val’

o.f := val δo o’.f := val′ = {o’.f} when o
.
= o’ ∧ val 6

.
= val’

a[i] := val δo b[j] := val′ = {b[j]} when a
.
= b ∧ i

.
= j ∧ val 6

.
= val’

δo = ∅

General updates

U δo \if (b) {U ′} = U δo U ′ when b
\if (b) {U} δo U ′ = U δo U ′ when b
U δo \for T s; U ′(s) =

⋃
s U δo U ′(s)

\for T s; U(s) δo U ′ =
⋃

s U(s) δo U ′

U0, . . . ,Um δo U ′
0, . . . ,U

′
n =

⋃
i,j Ui δ

oU ′
j

Table 2: Computing output dependence constraints.

output dependence analysis. If a location is assigned a different term in U and
S there will be an output dependence between them. Similarly as above, we
define in Table 2 a function δo that gives the set of locations, where the terms in
its two update arguments differ. The fourth case in the part for atomic updates
in Table 2 is the default that is used when none of the other cases applies.

It is sometimes not possible to decide the when side conditions in Table 2.
In this case we approximate conservatively and assume they are true. Possibly,
we remove too much information this way, but the method remains sound. If the
second argument is a quantified update, the set of locations could potentially
be very large which would make the computation of δo very expensive. This
can, however, not happen since quantified updates cannot occur in the updates
computed for the generic loop iteration.

Another possibility when a side condition cannot be decided would be to
compute two different results, one result for when the condition is true and one
for when it is false. A problem with this approach is that it potentially doubles
the number of returned results each time a side condition cannot be decided.
The returned result is used for the computation of the generic loop iteration
and, therefore, returning many results would lead to many different generic
loop iterations where each needs to be analyzed by the dependence analysis.

Further details on the implementation of the dependence analysis are in
[Sch07].

8 Constructing the State Update

If we can show that the iterations of a loop are independent of each other
(i.e., the constraint C defined in the previous section holds), we can capture all
state modifications of the loop in one update. Concretely, we use the following
quantified update (GRn, Γr, iter, and Ur were defined in Sections 4 and 5):
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Uloop ≡ \for int n; {\if (GRn) {{i := iter(n)}
⋃

r

\if (Γr) {Ur}}} (4)

The innermost conditional update in (4) corresponds to one loop iteration,
where the loop variable i has the value iter(n). In each state only one Γr can

be true so we do not need to ensure any particular order of the updates ~U .
The guard GR ensures that the iteration number n is within the loop range.

We must take care when using last-win clash-semantics to handle data output-
dependence. The iteration with the highest iteration number should have pri-
ority over all other iterations. This is ensured by the standard well-order on the
Java integer type.

9 Using the Analysis in a Correctness Proof

When we encounter a loop during symbolic execution we analyze it for par-
allelizability as described above and compute the dependence constraint. We
replace the loop by (4) if no failed leaves for the iteration statement or the
guard expression can be reached (see Section 4), the loop terminates (formula
GT , see Section 5), and the dependence constraint C in Section 7 is valid. Taken
together, this yields:

D ≡ (
∧

F∈ ~F

¬(∃n.GRn ∧ {i := iter(n)}F)) ∧

¬(∃n.GRn ∧ {i := iter(n)}GF ) ∧ GT ∧ C

If D does not hold, we fall back to the standard rules to verify the loop
(usually induction). In many cases it is not trivial to immediately validate or
refute D. Then we perform a cut on D in the proof and replace the loop by
the quantified state update Uloop (4) in the proof branch where D is assumed
to hold. The general outline of a proof using a cut on D is as follows:

If not Γ ⇒ D,
use standard induction

Γ ⇒ U〈for ... ; ...〉φ,D

Γ, D ⇒ UUloop〈...〉φ

Γ, D ⇒ U〈for ... ; ...〉φ

Γ ⇒ U〈for ... ; ...〉φ
cut

...

If we can validate or refute D we can close one of the two branches. Typically,
this involves to show that there is no aliasing between the variables occurring
in the dependence constraint. Even when it is not possible to prove or to refute
D our analysis is useful, because D in the succedent of the left branch can make
it easier to close.
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DeMoney SafeApplet IButtonAPI Total

LoC 1633 514 102 2249
Size (kB) 182 22 3 207

# loops 10 6 1 17

handled 4 0 1 5
with ext. 3 1 0 4
remaining 3 5 0 8

Table 3: Parallelizable loops in some representative Java Card programs.

10 Evaluation

We evaluated our method with three representative Java Card programs [Mos05]:
DeMoney, SafeApplet and IButtonAPI that together consist of ca. 2200 lines of
code (not counting comments). These programs contain 17 loops. Out of these,
our method can be applied to five (sometimes, a simple code transformation like
v += e to v = v0 + i * e is required). Additionally, four loops can be handled
if we allow object creation in the quantified updates (which is currently not
realized). The remaining eight loops cannot be handled because they contain
abrupt termination and irregular step functions. The results are summarized in
Table 3.

All loops in the row “handled” are detected automatically as parallelizable
and are transformed into quantified updates. The evaluation shows that a con-
siderable number of loops in realistic legacy programs can be formally verified
without resorting to interactive and, therefore, expensive techniques such as
induction. Interestingly, the percentage of loops that can be handled differs
drastically among the three programs. A closer inspection reveals that the
reason is not that, for example, all the loops in SafeApplet are inherently not
parallelizable. Some of them could be rewritten so that they become paralleliz-
able. This suggests to develop programming guidelines (just as they exist for
compilation on parallel architectures) that ensure parallelizability of loops.

11 Future Work

The coverage of our verification method can be improved in various ways.
One example is the function from the iteration number to the value of the
loop variable (see Section 5). In addition, straightforward automatic program
transformations that reduce the amount of dependencies (for example, v += e;

into v = vInit + i * e;) could be derived by looking at the updates computed
from a generic loop iteration. Recent work on automatic termination analy-
sis [CPR06] could be tried in the present setting for proving the termination
constraint in Section 5.

We intend to develop general programming guidelines that ensure paralleliz-
ability of loops. The current trend towards multi-core processors will result in
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more code being written in such a way that it is parallelizable and will for sure
rekindle the interest in parallelizability.

Critical dependencies exhibited during dependence analysis are likely to
cause complications even in a proof attempt based on a more general proof
method such as invariants or induction. Hence, one could try to use the infor-
mation obtained from the dependence analysis to guide the generalization of,
for example, loop invariants.

At the moment we take into account Java integer semantics only by checking
for overflow. The integer model could be made more precise by computing all
integer operators modulo the size of the underlying integer type. This would
require changes only in the dependence analysis; the Java DL calculus covers
full Java integer semantics already [BS04].

So far our verification method has been worked out and implemented for
loop structures, however, it can be seen as a particular instance of a modular
approach to proving correctness of non-linear programs composed of code pieces
p(i) parameterized by some i:

1. Compute automatically the effect Up(i) of p(i) with respect to a given
precondition.

2. Using the dependence analysis on Up(i), compute a sufficient condition C
under which the code p(i) can be seen as modular with respect to different
iterations of the parameter i.

3. The result of the analysis can be used in non-linear composition of p(i)
as done here for iterative control structures. The idea is just as well appli-
cable for recursive method calls and concurrent processes as is illustrated
by the following example:

int [] a = new int[n];

for (int i = 0; i < n; i++) {

new MyThread (i,a). start ();

}

If we assume that the run() method of the class MyThread updates ex-
actly position i of the array a, then the effect can be easily captured
by an update obtained from executing run() in the instance created by
new MyThread(i,a);. One difference to loops is that in the context of
threads one would probably exclude data output-dependence (see Sec-
tion 6.1) unless assumptions about the scheduler can be made. Otherwise,
the inherently parallel structure of state updates is well suited to model
concurrent threads.

In this paper we do not discuss in detail what happens after a loop has been
transformed into a quantified update. This is outside the scope of the present
work. So far, the KeY theorem prover has limited capabilities for automatic
reasoning over first-order quantified updates. Since quantified updates occur in
many other scenarios [Rüm06] it is worth to spend more effort on that front.
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12 Conclusion

We presented a method for formal verification of loops that works by transform-
ing loops into automatable first-order constructs (quantified updates) instead of
interactive methods such as invariants or induction. The approach is restricted
to loops that can be parallelized, but an analysis of representative programs
from the Java Card domain shows that such loops occur frequently. The
method can be applied to most initialization and array copy loops but also to
more complex loops as witnessed by Example 1.1.

The method relies on the capability to represent state change information
effecting from symbolic execution of imperative programs explicitly in the form
of syntactic updates [Bec01, Rüm06]. With the help of updates the effect of
a generic loop iteration is represented so that it can be analyzed for the pres-
ence of data dependencies. Ideas for the dependency analysis are taken from
compiler optimization for parallel architectures, but the analysis is not merely
static. Loops that are found to be parallelizable are transformed into first-order
quantified updates to be passed on to an automated theorem prover.

A main advantage of our method is its robustness in the presence of syntac-
tic variability in the target programs. This is achieved by performing symbolic
execution before doing the dependence analysis. The method is also fully auto-
matic whenever it is applicable and gives useful results in the form of symbolic
constraints even if it fails.
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[Pla04] André Platzer. Using a program verification calculus for construct-
ing specifications from implementations. Master’s thesis, Univ. Karl-
sruhe, Dept. of Computer Science, 2004.
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Abstract Interpretation Plugins for Type Systems

Tobias Gedell Daniel Hedin

Abstract

The precision of many type based analyses can be significantly in-
creased given additional information about the programs’ execution. For
this reason it is not uncommon for such analyses to integrate supporting
analyses computing, for instance, nil-pointer or alias information. Such
integration is problematic for a number of reasons: 1) it obscures the orig-
inal intention of the type system especially if multiple additional analyses
are added, 2) it makes use of already available analyses difficult, since they
have to be rephrased as type systems, and 3) it is non-modular: changing
the supporting analyses implies changing the entire type system.

Using ideas from abstract interpretation we present a method for pa-
rameterizing type systems over the results of abstract analyses in such a
way that one modular correctness proof can be obtained. This is achieved
by defining a general format for information transferal and use of the
information provided by the abstract analyses. The key gain from this
method is a clear separation between the correctness of the analyses and
the type system, both in the implementation and correctness proof, which
leads to a comparatively easy way of changing the parameterized analysis,
and making use of precise, and hence complicated analyses.

In addition, we exemplify the use of the framework by presenting a pa-
rameterized type system that uses additional information to improve the
precision of exception types in a small imperative language with arrays.

1 Introduction

In the book Types and Programming Languages [Pie02] Pierce defines a type
system in the following way: ”A type system is a tractable syntactic method
for proving the absence of certain program behaviors by classifying phrases
according to the kinds of values they compute”.

Pierce limits his definition to the absence of certain program behaviors, since
many interesting (bad) behaviors cannot be ruled out statically. Well-known
examples of this include division by zero, nil-pointer dereference and class cast
errors. The standard solution to this is to lift the semantics and include these
errors into the valid results of the execution, often in the form of exceptions,
and to have the type system rule out all errors not modeled in the semantics,
typically in addition to tracking what errors a program may result in.

87
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For a standard type system this solution is adequate; the types of programs
are not affected in any other way than the addition of a set of possible ex-
ceptions. In particular, any inaccuracies in the set of possible exceptions are
unproblematic to the type system itself (albeit inconvenient to the program-
mer), and, thus, in standard programming languages not much effort is made
to rule out syntactically present but semantically impossible exceptions.

For type based program analyses, however, the situation is different. Not
only are we not able to change the semantics to fit the capabilities of the type
system, since we are, in effect, retrofitting a type system onto an existing lan-
guage, but for some analyses — notably, for information flow security type
systems [SM03] — inaccuracies propagate from e.g. the exception types via
implicit flows to the other types lowering the precision of the type system and
possibly rendering more semantically secure programs to be classified as inse-
cure. Consider the following example:

try c1; c2; ... catch (Exception e) ch

If the command c1 may fail this affects whether the succeeding commands c2, . . .
are run or not, and thus any side effects — e.g. output on a public network —
will encode information about the data manipulated by c1. If this information
must be protected, this put serious limits on the succeeding commands c2, . . .
and on the exception handler ch.

This is problematic, since dynamic error handling introduces many possible
branches — every partial instruction becomes a possible branch to the error
handler if it cannot be guaranteed not to crash, and, thus, a source of implicit
flows. Hence, from a practical standpoint, there is a need to increase the accu-
racy of type based information flow analyses as demonstrated by some recent
attempts [BPR07, HS06, ABB06]. Noting that the majority of the informa-
tion flow analyses are formulated in terms of type systems, we focus on how to
strengthen a type system with additional information to increase its accuracy.

Even though our main motivation for this work comes from information flow
type systems, we investigate the problem in terms of a standard type system;
this both generalizes the method and simplifies the presentation. All our results
are immediately applicable to information flow type systems.

We see two major different methods of solving the problem of strengthening
type systems: 1) by integration, and 2) by parameterization. Briefly, 1) relies on
extending the type system to compute the additional needed information, and
2) relies on using information about the programs’ execution provided by other
analyses. Integration is problematic for a number of reasons: 1) it obscures the
original intention of the type system especially if multiple additional analyses
are added, 2) it makes use of already available analyses difficult, since they
have to be rephrased as type systems, and 3) it is non-modular: changing the
supporting analysis implies changing the entire type system.

Contribution We present a modular approach for parameterizing type sys-
tems with information about the program execution; the method is modular not
only at the type system level, but also at the proof level.
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The novelty of the approach lies not in the idea of parameterizing information
in itself, rather, the novelty is the setting — the parameterization of type sys-
tems with information from abstract analyses — together with the identification
of a general, widely applicable format for information passing and inspection,
which allows for modularity with only small modifications to the type system
and its correctness proof, and no modifications to the abstract analyses. This
modularity makes instantiating parameterized type systems with the results of
different abstract analyses relatively cheap, which can be leveraged to create
staged type systems, where increasingly precise analyses are chosen based on
previous typing errors.

Finally, we exemplify the use of the method in terms of a parameterized
type system for a small imperative language with dynamically allocated arrays,
and explore how the parameterization can be used to rule out nil-pointer ex-
ceptions, and exceptions stemming from array indices outside the bounds of the
corresponding arrays.

Outline Section 2 presents a small imperative language with arrays, used to
explain the method more concretely. Section 3 presents the parameterization:
the abstract environment maps, the plugins properties and the plugins, and
describes the process of parameterizing a type system. Section 4 is a concrete
example of applying the method to get a parameterized type system of the
language of Section 2. Section 5 discusses related work, and finally Section 6
concludes and discusses future work.

2 Language

To be concrete we use a small imperative language with arrays to illustrate our
method.

Syntax The language is a standard while language with arrays. For simplicity
we consider all binary operators to be total; the same techniques described to
handling the partiality of array indexing apply to partial operators. The syntax
of the language is found in Figure 1, where the allocation type τ [i] indicates
that an array of size i with elements of type τ should be allocated; the primitive
types ranged over by τ are defined in Section 4.1 below.

Expressions e ::= nil | i | x | e1 ⋆ e2 | x[e] | len(x)

Commands c ::= x := e | x1[e] := x2 | if e c1 c2 | while e c |
c1; c2 | x := new(τ [i]) | skip

Figure 1: Syntax



90 Tobias Gedell and Daniel Hedin

Semantics The semantics of the expressions found in Figure 2 is given in
terms of a big step semantics with transitions of the form 〈E, e〉 ⇓ v⊥, where
v⊥ ranges over error lifted values, i.e., the set of values extended with ⊥, which
indicates errors, and E ranges over the set of environments Env , i.e., pairs
(s, h) of stores and heaps. The values consist of the integers i and the pointers
p. The arrays a are pairs (i, d) of the size of the array and a map from integers
to values with a contiguous domain starting from 0. Formally, d ranges over⋃

n∈N{[0 7→ v1, . . . , n 7→ vn]}. The stores s are maps from variables x to values,
and the heaps h are maps from pointers to arrays. In the definition of the

〈E, nil〉 ⇓ nil 〈E, i〉 ⇓ i

E(x) = v

〈E, x〉 ⇓ v

E(x) = nil

〈E, x[e]〉 ⇓ ⊥

E(x) = p E(p) = (i, d)

〈E, len(x)〉 ⇓ i

E(x) = nil

〈E, len(x)〉 ⇓ ⊥

E(x) = p E(p) = (i, d) 〈E, e〉 ⇓ ⊥

〈E, x[e]〉 ⇓ ⊥

E(x) = p E(p) = (i1, d) 〈E, e〉 ⇓ i2 i2 6∈ [0..i1 − 1]

〈E, x[e]〉 ⇓ ⊥

E(x) = p E(p) = (i1, d) 〈E, e〉 ⇓ i2 i2 ∈ [0..i1 − 1]

〈E, x[e]〉 ⇓ d(i2)

〈E, e1〉 ⇓ ⊥

〈E, e1 ⋆ e2〉 ⇓ ⊥

〈E, e1〉 ⇓ v1 〈E, e2〉 ⇓ ⊥

〈E, e1 ⋆ e2〉 ⇓ ⊥

〈E, e1〉 ⇓ v1 〈E, e2〉 ⇓ v2

〈E, e1 ⋆ e2〉 ⇓ v1 ⋆ v2

Figure 2: Semantic Rules of Expressions

semantics, if a = (i1, d) then let a(i2) denote d(i2). Further, for E = (s, h),
let E(x) denote s(x), E[x 7→ v] denote (s[x 7→ v], h), E(p) denote h(p), and
similarly for other operations on environments including variables or pointers.

The semantics of commands found in Figure 3 is given in terms of a small step
semantics between configurations C with transitions of the form 〈E, c〉 → C,
where C is either one of the terminal configurations ⊥E and 〈E, skip〉 indicating
abnormal and normal termination in the environment E, respectively, or a non-
terminal configuration 〈E, c〉 where c 6= skip.

As is common for small step semantics we use evaluation contexts R.

R ::= · | x := R | x[R] := x | if R c c | R; c

The accompanying standard reduction rules found in Figure 4 allow for leftmost
reduction of sequences, error propagation and reduction of expressions inside
commands.
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〈E, x := v〉 → 〈E[x 7→ v], skip〉

E(x1) = nil

〈E, x1[i] := x2〉 → ⊥E

E(x1) = p E(p) = (i2, d) E(x2) = v i1 6∈ [0..(i2 − 1)]

〈E, x1[i1] := x2〉 → ⊥E

E(x1) = p E(p) = (i2, d) E(x2) = v i1 ∈ [0..(i2 − 1)]

〈E, x1[i1] := x2〉 → 〈E[p 7→ (i2, d[i1 7→ v])], skip〉

〈E,while e c〉 → 〈E, if e (c;while e c) skip〉

v 6= 0

〈E, if v c1 c2〉 → 〈E, c1〉 〈E, if 0 c1 c2〉 → 〈E, c2〉

〈E, skip; c〉 → 〈E, c〉

a = array(τ, i) p 6∈ dom(h)

〈(s, h), x := new(τ [i])〉 → 〈(s[x 7→ p], h[p 7→ a]), skip〉

Figure 3: Semantic Rules for Commands

〈E, e〉 ⇓ v

〈E,R[e]〉 → 〈E,R[v]〉

〈E, e〉 ⇓ ⊥

〈E,R[e]〉 → ⊥E

〈E1, c1〉 → 〈E2, c2〉

〈E1, R[c1]〉 → 〈E2, R[c2]〉

〈E, c〉 → ⊥E

〈E,R[c]〉 → ⊥E

Figure 4: Semantic Rules for Contexts

3 Parameterization

With this we are ready to detail the method of parameterization. First, let
us recapture our goal: we want to describe a modular way of parameterizing
a type system with information about the programs’ execution in such a way
that a modular correctness proof can be formed for the resulting system, with
the property that an instantiated system satisfies a correspondingly instantiated
correctness proof.

To achieve this, we define a general format of parameterized information and
a general method to access this information. Using the ideas of abstract inter-
pretation, we let the parameterized information be a map from program points
to abstract environments, intuitively representing the set of environments that
can reach each program point. Such a map is semantically sound — a solution
in our terminology — with respect to a set of initial concrete environments and
a program, if every possible execution trace the initial environments can give
rise to is modeled by the map.

For modularity we do not want to assume anything about the structure of
the abstract environments, but treat them as completely opaque. Noting that
each type system uses a finite number of forms of questions, we parameterize
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the type system not only over the abstract environment map, but also over a set
of plugins — sound approximations of the semantic properties of the questions
used by the type system.

Labeled Commands Following the elegant approach of Sands and Hunt
[HS08] we extend the command language with label annotations, which allow
for a particularly direct way of recording the environments that enter and leave
the labeled commands. Let l range over labels drawn from the set of labels L.
A command c can be annotated with an entry label (c)l , an exit label (c)l , or
both.

For while loops, care must be taken so that the entry label records all envi-
ronments that may flow into the loop, including the environments produced by
the iterations of the loop. This is important, since the entry label of the loop
may be used when typing its guard expression. Thus, the semantic rule for the
while loop is changed to pass on the entry label as follows.

〈E, (while e c)l〉 → 〈E, (if e (c; (while e c)l ) skip)l 〉

For the remaining commands, we extend the reduction contexts with (R)l , which
allows for reduction under exit labels, and the semantics with the following
transitions.

〈E1, c1〉 → 〈E2, c2〉

〈E1, (c1)
l 〉 → 〈E2, c2〉 〈E, (skip)l〉 → 〈E, skip〉

The idea is that a transition of the form 〈E1, (c1)
l〉 → 〈E2, c2〉 leaves a marker

in the execution sequence that the command labeled with the entry label l was
executed in E, and a transition of the form 〈E, (skip)l 〉 → 〈E, skip〉 indicates
that the environment E was produced by the command labeled with the exit
label l , which is why allowing reduction under exit labels but not under entry
labels is important.

3.1 Abstract Environment Maps

Using the ideas of abstract interpretation [CC77, CC79], let Env be the set of
abstract environments ranged over by E, equipped with a concretization function
γ : Env → P(Env), and let an abstract environment map M : L → Env be a
map from program points to abstract environments, associating each program
point with an abstract environment representing all concrete environments that
may reach the program point.

We define two soundness properties for abstract environment maps that
relate the maps to the execution of a program when started in environments
drawn from a set of initial environments C.

An abstract environment map M is an entry solution written entrysolE1
c1

(M)
with respect to an initial concrete environment E1, and a program c1 if all
〈E2, (c2)

l 〉 → 〈E3, c3〉 transitions in the trace originating in 〈E1, c1〉 are captured
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by M. The notion of exit solution written exitsolE1
c (M) is defined similarly but

with respect to all transitions of the form 〈E2, (skip)l 〉 → 〈E2, skip〉. We include
the notion of exit solutions for completeness, even though they are not used by
any of the examples in this paper.

entrysolE1
c1

(M) ≡ ∀E2, c2, l . 〈E1, c1〉 →∗ 〈E2, R[(c2)
l ]〉 =⇒ E2 ∈ γ(M(l))

exitsolE1
c (M) ≡ ∀E2, l . 〈E1, c〉 →∗ 〈E2, R[(skip)l ]〉 =⇒ E2 ∈ γ(M(l))

The definitions are lifted to sets of initial environments C in the obvious way.
Both the entry and exit solution properties are preserved under execution.

Lemma 3.1 (Preservation of Entry and Exit Solutions under Execution)
In the following, let C1 be the set of initial concrete environments and C2 the set
of environments that reach c2, i.e., C2 = {E2 | E1 ∈ C1, 〈E1, c1〉 → 〈E2, c2〉}.

entrysolC1
c1

(M) =⇒ entrysolC2
c2

(M) and exitsolC1
c1

(M) =⇒ exitsolC2
c2

(M)

Proof 3.1

Entry Solutions Assume (1) entrysolC1
c1

(M), i.e., that for all E1 ∈ C1, E3, c3, l
it holds that 〈E1, c1〉 →∗ 〈E3, R[(c3)

l ]〉 =⇒ E3 ∈ γ(M(l)). We must show
entrysolC2

c2
(M), i.e., that ∀E2 ∈ C2, E3, c3 . 〈E2, c2〉 →∗ 〈E3, R[(c3)

l ]〉 =⇒
E3 ∈ γ(M(l)). Thus, assume (2) E2 ∈ C2 and (3) 〈E2, c2〉 →∗ 〈E3, R[(c3)

l ]〉
and show that E3 ∈ γ(M(l)). From (2) and (3) we get 〈E1, c1〉 →∗

〈E3, R[(c3)
l ]〉 for some E1 ∈ C1. This, together with (1) gives E3 ∈ γ(M(l))

and we are done.

Exit Solutions The proof of preservation for exit solutions is identical to the
proof for entry solutions, since the properties are of the same form.

It should be pointed out that solutions can freely be paired to form new
solutions similarly to the independent attribute method for abstract interpre-
tation [CC79]. This is important since it shows that no generality is lost by
parameterizing a type system over only one abstract environment map.

3.2 Plugins

To the parameterized type systems, the structure of the abstract environments
is opaque and cannot be accessed directly. This allows for the decoupling of the
parameterized type system and the external analysis computing the abstract
environments. However, the parameterized type systems need a way to ex-
tract the desired information. To this end we introduce the concept of plugins.
Intuitively, a plugin provides information about a specific property of an en-
vironment; for instance, a nil-pointer plugin provides information about which
parts of the environment are nil.

The plugins are defined to be sound approximations of plugin properties,
defined as families of relations on expressions.
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Plugin Properties Let R be an n-ary relation on values; R induces a plugin
property, written R⋄, which is a family of n-ary relations on expressions indexed
by environments defined as follows.

(e1, . . . , en) ∈ R⋄
E ⇐⇒ 〈E, e1〉 ⇓ v1 ∧ . . . ∧ 〈E, en〉 ⇓ vn =⇒ (v1, . . . , vn) ∈ R

We can use the expression language to define semantic properties about envi-
ronments, since the expression language is simple, in particular, since it does
not contain iteration, and is free from side effects. A major advantage of the
approach is that it allows for a relatively simple treatment of expressions in
programs.

The choice of using the expression language as the plugin language is merely
out of convenience — languages with richer expression language would mandate
a separate language for the plugins and treat the exceptions similarly to the
statement, i.e., extend the labeling and the solutions to the expressions. In our
case, however, a separate plugin language would be identical to the expressions.

Example 3.1 (Non-nil and Less-than Plugin Properties) The non-nil
plugin property nn⋄ can be defined by a family of predicates indexed over concrete
environments induced by the value property nn defined such that nn(v) holds only
if the value v is not equal to nil. Similarly, the less-than plugin property lt⋄ can
be defined by lt such that lt(v1, v2) holds only if the value v1 is less than the value
v2. �

Plugins A plugin is a family of relations on expressions indexed by abstract
environments. Given a plugin property we define the corresponding plugins
to be relations on expressions indexed by abstract environments satisfying the
following demand. Let R♯ denote a plugin corresponding to the plugin property
R⋄.

(e1, . . . , en) ∈ R♯E =⇒ ∀E ∈ γ(E). (e1, . . . , en) ∈ R⋄
E

It is important to note that for each plugin property there are many possible plu-
gins, since the above formulation allows for approximative plugins. This means
that regardless of the abstract environment, and the decidability of the plugin
property R⋄, there exist decidable plugins, which guarantees the possibility of
preservation of decidability for parameterized type systems.

Example 3.2 (Use of Plugins) Assume a type system computing a set of
possibly thrown exceptions. When typing, for example, the array length operator
len(x) we are interested in the plugin property given by the non-nil predicate
nn. Let E be a sound representation of all environments reaching len(x). Given

nn♯E(x), we know that x will not be nil in any of the concrete environments rep-
resented by E, and, since E is a sound representation of all environments that
can reach the array length operator, we know that a nil-pointer exception will
not be thrown. �

Despite the relative simplicity of the plugin format it is surprisingly powerful;
in addition to the obvious information, such as is x ever nil, it turns out that
plugins can be used to explore the structure of the heap as we show in [GH08].
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3.3 Overview of a Parameterized Type System

Assume an arbitrary flow insensitive type system — the method works equally
well for flow sensitive type systems, but for brevity of explanation this section
is done in terms of a flow insensitive system — of the form Γ ⊢A c expressing
that c is well-typed in the type signature Γ, under the additional assumption
A. We let the exact forms of Γ and A be abstract; however, typical examples
are that Γ is a store type, and, for information flow type systems, that A is the
security level of the context, known as the pc [SM03]. Also local to this section,
assume a big-step semantics of the form 〈E1, c〉 → E2, read c executes in the
environment E1 resulting in the environment E2.

The first step in parameterizing the type system is to identify the plugin
properties R⋄

1, . . . , R
⋄
m that are to be used in the parameterized type rules. For

instance the non-nil plugin property can be used to increase the precision of
the type rule for the array length operator as discussed in Example 3.2 above,
cf. the corresponding type rules in Section 4 below. Each type rule is then
parameterized with an abstract environment map M, and a number of plugins
R♯

1, . . . R
♯
m, one for each of the plugin properties, forming a parameterized system

of the following form.

Γ ⊢
M,R♯

1
,...,R♯

m

A c

A typical correctness argument for type systems is preservation [Pie02], i.e.,
the preservation of a type induced invariant, well-formedness, (see Section 4.3
below) under execution. Well-formedness defines when an environment conforms
to an environment type, e.g. that all variables of integer type contain integers.
Let wf Γ(E) denote that E is well-formed in the environment type Γ; a typical
preservation statement has the following form:

Γ ⊢A c =⇒ wf Γ(E1) ∧ 〈E1, c〉 → E2 =⇒ wf Γ(E2)

More generally, a class of correctness arguments for type systems have the form
of preservation of an arbitrary type indexed relation RΓ under multiple execu-
tions:

Γ ⊢A c =⇒ RΓ(E11, . . . , E1n)∧

〈E11, c〉 → E21 ∧ · · · ∧ 〈E1n, c〉 → E2n =⇒ RΓ(E21, . . . , E2n)

This generalization is needed to capture invariants that are not safety properties,
for instance noninterference or live variable analysis.

For conservative parameterizations, i.e., where we add type rules with in-
creased precision, the proofs of correctness are essentially identical to the old
proofs, where certain execution cases have been ruled out using the semantic in-
terpretation of the plugins. To see this consider that a typical proof of the above
lemma proceeds with a case analysis on the possible ways c can execute in the
different environments E11 to E1n and proves the property for each case. See
the proof of Theorem 4.1 in Section 4.3 for an example of this. The correctness
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statement for the parameterized types system becomes:

entrysolCc (M) ∧ E11 ∈ C ∧ · · · ∧ E1n ∈ C ∧ Γ ⊢
M,R♯

1 ,...,R♯
m

A c =⇒

RΓ(E11, . . . , E1n)∧〈E11, c〉 → E21∧· · ·∧〈E1n, c〉 → E2n =⇒ RΓ(E21, . . . , E2n)

The interpretation of this statement is that execution started in any of the
environments in the set of possible initial environments is RΓ-preserving, i.e., it
narrows the validity of the original lemma to the set of initial environments.

Proof of Correctness

We have shown a way to define a type system relative to one or more abstract
environment maps, and a number of plugins and how to prove its conditional
correctness, i.e., by assuming that the abstract environment maps are solutions,
and that the plugins approximate the corresponding plugin properties.

To instantiate the type system with the result of an external analysis, it
must first be established that the results of the analysis are correct according
to our notion of solutions. This proof can typically be done once per family of
static analyses.

What is left per instantiation is to show that the used plugins are correct,
i.e., that they are sound approximations of the corresponding plugin properties
with respect to the semantics of the abstract environments. In most cases,
this is trivial since the structure of the abstract environments have been chosen
with this in mind. Furthermore, many type systems can be improved with
similar information; thus, it should be possible to build a library with plugins for
different plugin properties that can be used when instantiating implementations
of parameterized type systems.

The conclusion is that creating new correct instantiations can be made a rel-
atively cheap operation, which leads to interesting implementation possibilities.

3.4 Instantiations and Staged Type Systems

With this we are ready to investigate possible implementations of a parameter-
ized type system. For each program c, and type signature Γ, A we get a set
of possible derivations of Γ ⊢A c. If this set is inhabited we say that c is type
correct with respect to the type signature Γ, A, otherwise it is type incorrect.
The type checking problem for a standard type system is to decide, for a given
command and type signature, whether this set of derivations is empty or not.

For a parameterized type system we get, for each program c, type signature
Γ, A, and set of possible initial environments C, a set of possible derivations of

Γ ⊢
M,R♯

1
,...,R♯

n

A c for each solution M, and possible plugins R♯
1, . . . , R

♯
n. These sets

can be illustrated in a matrix with the solutions as columns and all combinations
of the plugins as the rows. To limit the size of the matrix we only consider two
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plugin properties, R⋄
1 and R⋄

2.

Γ, A, c, C M1 M2 . . . Mn

R♯
11, R

♯
21 T 1

11 T 2
11 . . . T n

11

R♯
11, R

♯
22 T 1

12 T 2
12 . . . T n

12
...

...
...

...

R♯
1m, R

♯
2p T 1

mp T 2
mp . . . T n

mpM ranges over the different solutions, R♯
i ranges over different plugins for the

plugin propertyR⋄
i , and each T i

kl is the set of possible derivations of Γ ⊢
Mi,R

♯
1k,R♯

2l

A

c where the plugins are instantiated with the concretization function of Mi.
The type checking problem for a parameterized type system becomes deciding
whether at least one of the derivation sets T i

kl is non-empty in which case c
is type correct with respect to the type signature Γ, A and the set of possible
initial environments C.

Implementation of Parameterized Type Systems

An implementation of a unparameterized type system is a function tc that takes
a type signature and a program such that tc(Γ, A, c) returns true if it can find
a derivation of Γ ⊢A c.

For simplicity, assume a fixed set of abstract environments Env, a number
of corresponding abstract analyses AIi, and a number of corresponding decision
procedures dj for the plugin properties R⋄

j . An implementation of a parameter-
ized type system is a function tc such that tc(Γ, A, c,M, d1, . . . , dn) returns true

if there is a derivation of Γ ⊢
M,R♯

1
,...,R♯

n

A c where R♯
i is the extension of di.

The decision procedures and the results of the abstract analyses correspond
to selecting a number of rows and columns respectively in the above matrix.
The resulting type checking problem can be illustrated as follows, where f is
defined by f(M, d1, d2) ≡ tc(Γ, A, c,M, d1, d2).

Γ, A, c, C,Env AI1 → M1 AI2 → M2 . . . AIn → Mn

d11, d21 f(M1, d11, d21) f(M2, d11, d21) . . . f(Mn, d11, d21)
d11, d22 f(M1, d11, d22) f(M2, d11, d22) . . . f(Mn, d11, d22)

...
...

...
...

d1m, d2p f(M1, d1m, d2p) f(M2, d1m, d2p) . . . f(Mn, d1m, d2p)

Hence, the type checking problem is reduced to finding an abstract analysis AIi
and decision procedures d1k, d2l, . . . such that f(Mi, d1k, d2l, . . . ) is non-empty.

Staged Type Systems

The resulting type checking problem is a search problem and the search order
will clearly have a major impact on the efficiency of the implementation. One
possible search strategy is to order the abstract analyses and decision procedures
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according to complexity and runtime cost and form a staged type system, that
successively invokes more and more expensive and precise analyses and decision
procedures.

For instance, assume a decision procedure f for a parameterized type sys-
tem, defined as above. Also assume a number of external analyses AI1 to AIn
of increasing complexity and precision chosen from a family of analyses that
guarantees valid environment maps. Assuming that the result of these analy-
ses are relevant to the sought after information, i.e., that we for each analysis
AIi can form non-empty sound decision procedures d1, . . . , dm for the results
of the analyses. Furthermore, assume a constant external analysis AI0, whose
constant result is a solution, M0, mapping all labels to the top abstract environ-
ment representing all concrete environments, with the empty decision procedure
d0.

With this we can fairly easily implement a staged type system. First, we
try to type the program under consideration with respect to f(M0, d

0, . . . , d0)
using the environment map extracted from the constant analysis and the empty
decision procedure for all plugin properties. Given that the type system has been
conservatively parameterized this is equivalent to checking with the original,
non-parameterized, type system. If the check fails, the failure may come from
lack of precision, and we may try with more precise external analyses. Thus,
for every failure at stage i, the system uses AIi+1 to compute an environment
map Mi+1 and tries to type check using f(Mi+1, d1, . . . , dm).

More intricate staged type systems can also be formed where the reason for
the type failure is analyzed and given as feedback to the next stage. The benefit
of doing this is apparent in cases where the environment map is a combination of
the result of a number of external analysis. Assume for example a parameterized
type system using both aliasing information and integer domain information. If
the program fails to type in the first stage because of an alias problem, it would
probably suffice to only recompute the alias information using a more precise
alias analysis in the next stage. One way to view the set of increasingly precise
external analysis is as a matrix with one dimension for each type of analysis and
plugin property. In the general setting where a parameterized type system uses
multiple external analysis the external analysis build up a multi-dimensional
matrix where each point corresponds to a particular instantiation of the type
system. The type error is then used to navigate through this matrix.

4 A Parameterized Type System

In this section we exemplify the ideas described in the previous section by pre-
senting a parameterized type system for the language introduced in Section 2.
The type system improves over the typical type system for such a language by
using the parameterized information to rule out exceptions that cannot occur.

A larger example of a parameterized type system, showing how plugins can
be used to perform structural weakening and strong updates for a flow-sensitive
type system, can be found in [GH08].
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4.1 Type Language

The primitive types ranged over by τ are the type of integers int , and array
types, τ [], indicating an array with elements of type τ . The store types ranged
over by Σ are maps from variables to primitive types. The exception types
ranged over by ξ are ⊥Σ, indicating the possibility that an exception is thrown,
and ⊤, indicating that no exception is thrown. This is a simplification from typ-
ical models of exceptions, where multiple types are used to indicate the reason
for the exception. However, for the purpose of exemplifying the parameteri-
zation this model suffices; the results are easily extended to a richer model.
In addition we use a standard subtype relation <: defined to be the smallest
reflexive, transitive relation satisfying:

⊤ <: ⊥Σ

Σ1 <: Σ2

⊥Σ1
<: ⊥Σ2

∀x ∈ dom(Σ2) . Σ1(x) <: Σ2(x)

Σ1 <: Σ2

4.2 Type Rules

The judgment for expressions, Σ ⊢E,nn♯,lt♯ e : τ, ξ, is read as the expression e
is well-typed with respect to the abstract environment E, the non-nil plugin
nn♯, and the less-than plugin lt♯, in the environment type Σ, with return type τ
possibly resulting in exceptions as indicated by ξ. The type rules for expressions

are found in Figure 5 where ⊢‡ is used as short notation for ⊢E,nn♯,lt♯ .

Σ ⊢‡ nil : A,⊤ Σ ⊢‡ i : int ,⊤

Σ(x) = τ

Σ ⊢‡ x : τ,⊤

Σ ⊢‡ e1 : τ, ξ Σ ⊢‡ e2 : τ, ξ

Σ ⊢‡ e1 ⋆ e2 : τ, ξ

Σ ⊢‡ e : τ1, ξ1 τ1 <: τ2 ξ1 <: ξ2

Σ ⊢‡ e : τ2, ξ2

Σ(x) = τ [] ¬nn♯E(x)
Σ ⊢‡ len(x) : int ,⊥Σ

Σ(x) = τ [] nn♯E(x)
Σ ⊢‡ len(x) : int ,⊤

Σ(x) = τ [] Σ ⊢‡ e : int , ξ nn♯E(x) ∧ −1 lt♯E e ∧ e lt♯E len(x)

Σ ⊢‡ x[e] : τ, ξ

Σ(x) = τ [] Σ ⊢‡ e : int , ξ ¬(nn♯E(x) ∧ −1 lt♯E e ∧ e lt♯E len(x))
⊥Σ <: ξ

Σ ⊢‡ x[e] : τ, ξ

Figure 5: Type Rules for Expressions

The type system for commands is flow-sensitive; the judgment, Σ1 ⊢M,nn♯,lt♯

c ⇒ Σ2, ξ is read as the command c is well-typed with respect to the abstract
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environment map M, the non-nil plugin nn♯, and the less-than plugin lt♯, in the
environment type Σ1 resulting in the environment type Σ2, possibly resulting
in an exception as indicated by ξ. The type rules for commands are found in

Figure 6, where ⊢† is used as short notation for ⊢M,nn♯,lt♯ , and ⊢‡ is used as

short notation for ⊢M(l),nn♯,lt♯ .

Σ ⊢‡ e : τ, ξ

Σ ⊢† (x := e)l ⇒ Σ[x 7→ τ ], ξ

Σ ⊢‡ e : int , ξ Σ(x1) = τ1[] Σ(x2) = τ2 τ2 <: τ1
¬(nn♯M(l)(x1) ∧ −1 lt♯M(l) e ∧ e lt♯M(l) len(x1))

Σ ⊢† (x1[e] := x2)
l ⇒ Σ,⊥Σ

Σ ⊢‡ e : int , ξ Σ(x1) = τ1[] Σ(x2) = τ2 τ2 <: τ1
nn♯M(l)(x1) ∧ −1 lt♯M(l) e ∧ e lt♯M(l) len(x1)

Σ ⊢† (x1[e] := x2)
l ⇒ Σ, ξ

Σ1 ⊢‡ e : int , ξ
Σ1 ⊢† c1 ⇒ Σ2, ξ Σ1 ⊢† c2 ⇒ Σ2, ξ

Σ1 ⊢† (if e c1 c2)
l ⇒ Σ2, ξ

Σ1 ⊢M(l),nn♯,lt♯ e : int , ξ
Σ1 ⊢† c⇒ Σ2, ξ Σ2 <: Σ1

Σ1 ⊢† (while e c)l ⇒ Σ1, ξ

Σ ⊢† x := new(τ [i]) ⇒ Σ[x 7→ τ []],⊤ Σ ⊢† skip ⇒ Σ,⊤

Σ1 ⊢† c1 ⇒ Σ2, ξ Σ2 ⊢† c2 ⇒ Σ3, ξ

Σ1 ⊢† c1; c2 ⇒ Σ3, ξ

Σ1 <: Σ2 Σ2 ⊢† c⇒ Σ3, ξ1
Σ3 <: Σ4 ξ1 <: ξ2

Σ1 ⊢† c⇒ Σ4, ξ2

Figure 6: Type Rules for Commands

Apart from the parts related to the parameterization, the expression and
command type rules are entirely standard. With respect to the parameterization
specifics, the type rules for array size, and array indexing make use of the
parameterized information and occur in two forms: one that is able to exclude
the possibility of exceptions, and one that is not.

For the array size operator it suffices to rule out that the variable x ever
contains nil to rule out the possibility of exceptions, for array indexing (for both
the expression and the command) we must demand that the index is greater
or equal to zero, and that the index is smaller than the size of the array in
addition to the demand that the variable is non-nil. For an example detailing
the type derivation of a small program with different parameterized information
see Appendix A.
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δ ⊢ i : int

δ(p) <: τ

δ ⊢ p : τ
δ ⊢ v : τ
δ ⊢ v : τ, ξ δ ⊢ ⊥ : τ,⊥Σ

∀i ∈ dom(a) . δ ⊢ a[i] : τ

δ ⊢ a : τ []

∀p ∈ dom(δ) . δ ⊢ h(p) : δ(p)

δ ⊢ h

∀i ∈ dom(a) . δ ⊢ a[i] : τ

δ ⊢ a : τ []

∀x ∈ dom(Σ) . δ ⊢ s(x) : Σ(x)

δ ⊢ s : Σ
δ ⊢ s : Σ δ ⊢ h
δ ⊢ (s, h) : Σ

δ ⊢ E : Σ2

δ ⊢† ⊥E : Σ1,⊥Σ2

δ ⊢ E : Σ

δ ⊢† E : Σ, ξ

Σ1 ⊢† c⇒ Σ2, ξ δ ⊢ E : Σ1

δ ⊢† 〈E, c〉 : Σ2, ξ

Figure 7: Well-formedness

4.3 Correctness

With this we are ready to formulate correctness for the parameterized type
system. As is standard we split the correctness argument into two theorems,
progress — intuitively, that well-typed commands and expressions are able to
execute in all environments that conform to the entry environment type of the
command or expression — and preservation — intuitively, that the result of
running the command or expression conforms to the exit type of the same.
In contrast to the preservation proof, the progress proof is independent of the
parameterized information. For space reasons we omit the progress proof.

Well-formedness The well-formedness relation in Figure 7 defines when val-
ues, environments and contexts are well-formed with respect to the correspond-
ing types. The pointer typing δ is a map from pointers to record names, and
makes the relation inductively definable in the presence of cyclic heaps. As

above, ⊢† is used as short notation for ⊢M,nn♯,lt♯ . In short, a value is well-formed
with respect to any exception type, whereas an error is only well-formed with
respect to an exception type that indicates the possibility of the error, and
similarly for well-formed environments, with the addition of the demand that
the exception environment is well-formed in the exception environment type.
A configuration is well-formed in the type Σ2, ξ if there exists an environment
type Σ1 in which the environment E is well-formed such that the command is
well-typed with Σ1 as entry type and the Σ2, ξ as exit type.

Preservation of Types of Expressions and Commands Preservation of
types of expressions expresses that well-typed expressions preserve well-formedness

under execution, i.e., for an expression e s.t. Σ ⊢E,nn♯,lt♯ e : τ, ξ running e in
Σ-well-formed environments that are modeled by the abstract environment E
will result in τ, ξ-well-formed values.
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Theorem 4.1 (Preservation of Types of Expressions)

Σ ⊢E,nn♯,lt♯ e : τ, ξ =⇒ ∀E ∈ γ(E) . δ ⊢ E : Σ ∧ 〈E, e〉 ⇓ v =⇒ δ ⊢ v : τ, ξ

Proof 4.1 By induction on the derivation of Σ ⊢E,nn♯,lt♯ e : τ, ξ. Intuitively, in
each case, the proof proceeds by an inversion of 〈E, e〉 ⇓ v, which results in a
number of sub-cases — one for each semantic rule for the expression, including
the ones resulting in exceptions. However, in the cases where the type system
can rule out exceptions it contains enough information about the execution from
the use of the plugins on the abstract environment to prove the impossibility of
an exception.

We exemplify the difference between a standard proof and a parameterized
proof by proving the correctness for the array indexing cases, corresponding to
the two type rules for array indexing.

Assume (1) Σ ⊢E,nn♯,lt♯ e : τ, ξ, (2) E ∈ γ(E), (3) δ ⊢ E : Σ and (4) 〈E, e〉 ⇓
v. We must show δ ⊢ v : τ, ξ.

array indexing with exceptions In this case the last applied type rule in
the derivation is the rule that cannot rule out exceptions, which gives

(5) Σ(x) = τ [], Σ ⊢E,nn♯,lt♯ e′ : int , ξ′, ¬(nn♯E(x)∧−1 lt♯E e′∧e′ lt♯E len(x)),
ξ = ⊥Σ and that e = x[e′]. Inversion of (4) gives us the following four
cases.

1) nil-pointer exception This case gives v = ⊥ from which the result
δ ⊢ ⊥ : τ,⊥Σ is immediate.

2) e leads to an exception Same as the case above.

3) index out of bounds Same as the case above.

4) successful execution Let E = (s, h); this case gives (6) s(x) = p,
h(p) = (i1, d), 〈E, e′〉 ⇓ i2, (7) i2 ∈ [0..(i1 − 1)] and v = d(i2). From
(3, 5, 6) we get δ ⊢ p : τ [], which in turn gives δ(p) <: τ [], which means
(8) δ(p) = τ [], since array subtyping is invariant. Further, (3) and
(8) give δ ⊢ h(p) : τ [], which gives ∀i ∈ dom((i1, d)) . δ ⊢ (i1, d)(i) : τ .
Thus, (7) gives us that i2 ∈ dom((i1, d)), from which we get the result
δ ⊢ d(i2) : τ .

array indexing without exceptions In this case the last applied type rule in
the derivation is the rule that rules out exceptions, which gives Σ(x) = τ [],

Σ ⊢E,nn♯,lt♯ e′ : int , ξ, (5) nn♯E(x), (6) −1 lt♯E e′, (7) e′ lt♯E len(x), and that
e = x[e′]. Again, inversion of (4) gives us the following four cases.

1) nil-pointer exception This case gives (8) s(x) = nil. (1) and (5)
give ∀E ∈ γ(E). x ∈ nn⋄

E, which together with (2) gives (9) 〈E, x〉 ⇓
nil =⇒ nil ∈ nn. (8) gives 〈E, x〉 ⇓ nil, which together with (9) gives
nil ∈ nn which is a contradiction.



Abstract Interpretation Plugins for Type Systems 103

2) e leads to an exception This case gives 〈E, e′〉 ⇓ ⊥ which together
with the induction hypothesis gives ξ = ⊥Σ from which the result is
immediate.

3) index out of bounds This case gives s(x) = p, h(p) = (i1, d), 〈E, e′〉 ⇓
i2 and (8) i2 6∈ [0..(i1 − 1)]. In a way similar to 1) above, we use (6)
to prove that it is impossible that i2 is less than 0 and (7) to prove
that it is impossible that i2 is greater than or equal to i1. Together
this contradicts (8) and we have reached a contradiction.

4) successful execution This case is proven in the same way as case 4)
in array indexing with exceptions.

Thus, as the proof of preservation of types for array indexing shows, we
achieve higher precision in the exception type by using the parameterized infor-
mation to prove some cases impossible as described in Section 3.3. As discussed,
the proof for the parameterized type system is essentially identical to the origi-
nal proof where there is no parameterized information, with the difference that
two cases are proved impossible.

Given the well-formedness formulation for configurations above, preservation
of types of commands can be formulated in the same way as preservation of types
of expressions.

Theorem 4.2 (Preservation of Types of Commands)

Σ1 ⊢M,nn♯,lt♯ c⇒ Σ2, ξ ∧ entrysolCc (M) =⇒

∀E ∈ C . δ1 ⊢ E : Σ1 ∧ 〈E, c〉 → C =⇒ ∃δ2 . δ2 ⊢M,nn♯,lt♯ C : Σ2, ξ

Proof 4.2 By induction on the derivation of Σ1 ⊢M,nn♯,lt♯ c ⇒ Σ2, ξ. Intu-
itively, such an induction proceeds by a case analysis of the type rules; in all
cases entrysolCc (M) guarantees that M is a sound representation of the possible
executions of c for (at least) all environments in C. As above, inversion of
〈E, c〉 → C gives rise to cases of abnormal execution that can be proved impos-
sible in the cases where the type system rules out exception by using fact that nn♯

and lt♯ are sound approximations for the non-nil and less-than plugin properties
respectively.

We consider a representative case: the proof for sequence. The proof for
array update follows the structure of the proof of array indexing above, with the
difference that the proof of update relies on a standard proof for array updates
in the cases of successful execution; the remaining cases are either standard or
subject to similar changes.

Assume Σ1 ⊢M,nn♯,lt♯ c ⇒ Σ2, ξ, (1) entrysolCc (M), E ∈ C, (3) δ1 ⊢ E : Σ1

and (4) 〈E, c〉 → C. We must show ∃δ2 . δ2 ⊢M,nn♯,lt♯ C : Σ2, ξ.

sequence In this case the last applied rule in the derivation is the rule for

sequence, which gives (5) Σ1 ⊢M,nn♯,lt♯ c1 ⇒ Σ, ξ1, (6) Σ ⊢M,nn♯,lt♯ c2 ⇒
Σ2, ξ2, c = c1; c2 and ξ = ξ1 ⊔ ξ2 for some intermediate Σ, ξ1 and ξ2.
Inversion of (4) gives the following three cases.
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skip This case gives c1 = skip and C = 〈E, c2〉. From (5) we get Σ = Σ1

and ξ1 = ⊤. The definition of the operator ⊔ gives ξ = ξ2. This,
together with (3) and (6) gives the result.

context reduction This case gives c = R[c′1] and 〈E, c′1〉 → 〈E′, c′2〉.
The case where c′1 = c is identical to the case skip above. We, there-
fore, only consider the case where c′1 6= c. This gives R = R′[c′1]; c2
and C = 〈E′, R′[c′2]; c2〉. Since the execution of c1 is a prefix of the
execution of c1; c2 we get entrysolCc1

(M) from (1). By applying the in-

duction hypothesis we get (7) Σ′ ⊢M,nn♯,lt♯ R′[c′2] ⇒ Σ, ξ1 and (8) δ2 ⊢
E′ : Σ′ for some Σ′, and some δ2. The typing rule for sequences ap-

plied to (6) and (7) gives Σ′ ⊢M,nn♯,lt♯ R′[c′2]; c2 ⇒ Σ2, ξ1 ⊔ ξ2 which
together with (8) gives the result.

exception This case gives c = R[c′1] and 〈E, c′1〉 → 〈E′, c′2〉. Once again
we only consider the case where c′1 6= c, which gives R = R′[c′1]; c2 and
C = ⊥E′ . From here on the result is immediate from the induction
hypothesis, which can be applied using the same reasoning as in the
previous case.

Top-level Correctness of Commands The proof of top-level correctness of
commands makes use of progress of commands, i.e., that well-type programs are
able to take one step of execution in correspondingly well-formed environments.

Theorem 4.3 (Progress of Commands)

Σ1 ⊢M,nn♯,lt♯ c⇒ Σ2 =⇒ ∀E . δ ⊢ E : Σ1 =⇒ ∃C . 〈E, c〉 → C

Proof 4.3 By induction on Σ1 ⊢M,nn♯,lt♯ c⇒ Σ2.

Let 〈E, c〉 →n C be the obvious lifting of the small step evaluation to evalu-
ation of n consecutive steps. With this we are ready to formulate the top-level
correctness of commands, that well-typed commands terminate in a well-formed
environment or result in well-formed configurations regardless of the number of
execution steps. For convenience we let T range over terminal configurations.

Theorem 4.4 (Top-level Correctness of Commands)

Σ1 ⊢M,nn♯,lt♯ c1 ⇒ Σ2, ξ ∧ entrysolCc1
(M) =⇒ ∀E1 ∈ C . δ1 ⊢ E1 : Σ1 =⇒

∀n. (∃n′ ≤ n, T, δ2. 〈E1, c1〉 →
n′

T ∧ δ2 ⊢ T : Σ2, ξ)∨

(∃E2, c2, δ2. 〈E1, c1〉 →
n 〈E2, c2〉 ∧ δ2 ⊢M,nn♯,lt♯ 〈E2, c2〉 : Σ2, ξ)

Proof 4.4 Assume (1) Σ1 ⊢M,nn♯,lt♯ c1 ⇒ Σ2, ξ, (2) entrysolCc1
(M), (5) δ1 ⊢ E1 :

Σ1 for some E1 ∈ C and δ1. We proceed by induction on n.

base case This case gives n = 0. (1) and (5) give δ1 ⊢ 〈E1, c1〉 : Σ2, ξ which
together with 〈E1, c1〉 →0 〈E1, c1〉 gives the result.
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induction step In this case we show that the property holds for n+1 assuming
that it holds for n. Case analysis over the applied induction hypothesis
gives the following two cases.

terminated reduction This case gives 〈E1, c1〉 →n′

T and δ′2 ⊢ T : Σ2, ξ
for some n′ ≤ n, T and δ′2. The result follows immediately from
n′ ≤ n+ 1.

non-terminated reduction This case gives 〈E1, c1〉 →n 〈E′
2, c

′
2〉 and

(6) δ′2 ⊢M,nn♯,lt♯ 〈E′
2, c

′
2〉 : Σ2, ξ for some E′

2, c
′
2 and δ′2. From (6) we

get (7) Σ′
1 ⊢M,nn♯,lt♯ c′2 ⇒ Σ2, ξ and (8) δ′2 ⊢ E′

2 : Σ′
1 for some Σ′

1.
From Theorem 4.3, together with (7) and (8) we get (9) 〈E′

2, c
′
2〉 → C

for some C, which gives (10) 〈E1, c1〉 →n+1 C. Lemma 3.1, Preser-

vation of Entry Solutions under Execution, and (2) gives (10) entrysolC
′

c′

2
(M)

for a C′ such that E′
2 ∈ C′. Theorem 4.2, Preservation of Types of

Commands, applied to (7), (10), (3), (4), (8) and (9) gives δ2 ⊢M,nn♯,lt♯

C : Σ2, ξ for some δ2. The result follows immediately from this and
(10).

5 Related Work

The method presented in this paper combines an analysis, formulated as a type
system, with a number of external analyses, computing information useful to the
type system, by parameterizing the type system over the computed information.

Similar in spirit is the work by Foster, Fähndrich and Aiken [FFA99] in
which they present a framework for augmenting existing type systems with
type qualifiers, e.g. const and nonnil. Our work differs from theirs in that
they provide a framework to compute the qualifiers, rather than making use of
them.

In [CMM05] Chin, Markstrum and Millstein investigate a method for sup-
porting user-defined semantic type qualifiers that are closely related to unary
plugins. As above, their work is aimed at computing an analysis result, rather
than modularly making use of it. In addition to reason about soundness they
propose a method to automatically verify the soundness of the extension using
an automatic theorem prover.

Among the type systems making use of additional information are type sys-
tems that eliminate array bound checks, e.g., [XP98], using a decidable formu-
lation of dependent types. It should be pointed out that even though the type
checking is decidable the inference is not; nothing in our approach rules out
inference. In [HS06] Hedin and Sands use a simplistic type based inference of
nil-pointers needed to allow the use of non-secret fields in objects pointed to
by pointers with secret pointer values. We believe that the clarity, correctness
proof and power of their system could benefit greatly by being reformulated in
our framework.

In [CW00] Crary and Weirich present a type system for resource bound
verification, e.g., memory usage and execution time. Their type system goes
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beyond the capacity of the plugins framework — time and memory usage are
not values in a standard semantics. It could potentially be interesting to see to
what extent the plugins model can be modified to encompass such extensions.

While this work suggests resolving type errors by using more and more elab-
orate parameterized analyses, Flanagan [Fla06] suggests pushing checks that
cannot be statically resolved to runtime checks, cf. type cast checks in Java.
For many uses of the plugins framework, uniting the two approaches could prove
beneficial — if the program cannot be statically proven correct using a differ-
ent external analysis, Flanagan’s method could be applied to insert a dynamic
check.

With respect to other work on combining static analyses, if the analyses
we want to combine are formulated as abstract interpretations, a number of
techniques from the large body of work on abstract interpretation [CC77, CC79,
GT06] becomes applicable. An example of such a combination is the reduced
product method. Similar to our method, the combination can be done in a
systematic way and correctness of the resulting analysis follows from correctness
of the combined analyses.

An advantage of the abstract interpretation framework is that for partially
overlapping analyses and a combination like the reduced product, the analyses
will benefit from each other. Each analysis can make use of the information com-
puted by the other analyses, which stands in contrast to our method where the
external analyses cannot make direct use of the derivation of the parameterized
type system.

However, an obvious restriction of the abstract interpretation framework is
that all analyses must be formulated as abstract interpretations, which is not
always the case. Reformulating, for example, a type based analysis into an
abstract interpretation is not always easily done nor desirable, as for exam-
ple indicated by the field of security where the analyses tend to be type based
[SM03]. Our approach does not have that restriction. A type system can be
combined with any external analyses that compute valid solutions. If the ex-
ternal analyses are formulated as abstract interpretations our method can be
combined with the abstract interpretation framework to make use of, for exam-
ple, reduced products.

6 Conclusions and Future Work

We have presented a method for parameterizing program analyses for imperative
small step semantics with information about the programs’ execution. The
appeal of the method compared to approaches where additional information
about the programs’ execution is provided by extending the type system with
capabilities of computing the additional information, i.e., fusing the type system
with another analysis, lies in that:

• The parameterization does not impose heavy changes to the type system.
The rules remain relatively close to the original rules; only the use of the
additional information is added to the rules where the information is used
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— other rules remain essentially unaffected. Comparatively, fusing an
analysis modifies all rules to compute the information, in addition to the
uses of the information in certain rules.

• The parameterization gives the possibility of changing the parameterized
analysis with relative ease — proofs for the family of analyses1, and decision
procedures with corresponding soundness proofs have to be done. Com-
paratively, changing the analysis for a fused type system means creating
a new fused type system and correctness proof from scratch.

The method is based on the identification of a generic format for information
exchange between the program analysis and the parameterized results, together
with methods — the plugins — for asking specific questions about the each
program parts execution environment.

To exemplify the method we have given an overview of the steps involved
in parameterizing an existing type system, including the changes to the type
system itself, but also the changes to the correctness proof of the type system.
A corner stone in this work is the attempt to make the correctness proof a
natural part of the parameterization process so that the proof burden for each
parameterization is relatively low.

A drawback is that the resulting system may no longer be compositional; e.g.
a compositional type system becomes non-compositional if the parameterized
information is not compositional. Another restriction is that the parameteri-
zation is one-way only; there is no back propagation of type information that
could have been used by the parameterized analysis.

Future Work The motivation for this work grew out of a perceived need to
increase the precision of type based analyses of secure information flow. For
this reason a natural continuation of this work is to apply the method to an
information flow type system.

In addition to this, an implementation of the parameterized type system
of this paper would be valuable to asses the practicality of the approach. Of
particular interest would be to implement a staged type system, where the
reason for a type failure is analyzed and given as feedback to the next stage.
The benefit of doing this is apparent in cases where the abstract environment
map is a combination of the result of a number of external analyses. One way
to view a set of increasingly precise external analyses is as a matrix with one
dimension for each type of analysis and plugin property. In the general setting
where a parameterized type system uses multiple external analyses the external
analyses build up a multi-dimensional matrix where each point corresponds to
a particular instantiation of the type system.
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A Examples

This section considers a small example, that highlights some of the properties
of the above type system. In particular, we show the staged nature of the type
system and how it reverts to a standard type system when instantiated with
a void analysis — an analysis where the decision procedures are constant false
functions. First, consider the following simple program.

a := new(int[10]);

i = 0;

while (i < size(a)) {

a[i] := 0;

i = i + 1;

}

The program allocates a new array of integers and initializes it to all zeroes.
There are two sources of exceptions in this program: 1) the size operation throws
an exception if a is nil, and 2) the assignment to the array throws an exception
if a is the nil-pointer or if i is out of bounds. A typical standard type system
would not be able to exclude the possibilities of exceptions in this program,
even though it is relatively easy to extend a standard type system to exclude
exceptions in this particular case. The main point of the following is not to form
an analysis that is able to deal with the above example, but rather to exemplify
the operation of the type system.

Below, we consider type derivations of the above program using three dif-
ferent external analyses: a void analysis, a simplistic non-nil analysis, and an
extension to the non-nil analysis with an array index analysis — simply pairing
the results of the non-nil and an array index analysis is enough. We will not
present any details of the analyses, but rather just appeal to the reader’s intu-
ition that analyses that can handle the above example are relatively simple to
form.

Void Analysis A void analysis is an analysis where all decision procedures
are constant false. Clearly, when instantiated with a void analysis, the type
system reverts to a standard type system. Let c refer to a labeled version of the
above program.

c ≡ a := new(int [10]); (i := 0)l1 ; (while i < len(a) {(a[i] := 0)l3 ; (i := i+ 1)l4})l2

Second, to fit the derivation onto one page we analyze and number the type
derivations for the individual statements of the program in Figure 8 below. For
brevity the derivation of i + 1 in derivation (6) is done in one step. We let
Σ1 = [a 7→ int []], Σ2 = [a 7→ int [], i 7→ int ]. The grayed premises in derivation
(3), and (5), mark uses of the plugins procedures; clearly, a sound void analysis
cannot rule our any environments making the following derivation the most
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1
∅ ⊢M,nn♯,lt♯ a := new(int [10]) ⇒ Σ1,⊤

2
Σ1 ⊢M(l1),nn♯,lt♯ 0 : int ,⊤

Σ1 ⊢M,nn♯,lt♯ (i := 0)l1 ⇒ Σ2,⊤

3
Σ2(a) = int [] ¬nn♯M(l2)

(a)

Σ2 ⊢M(l2) len(a) : int ,⊥Σ2

4

Σ2(i) = int

Σ2 ⊢M(l2),nn♯,lt♯ i : int ,⊤ [3]

Σ2 ⊢M(l2),nn♯,lt♯ i < len(a) : int ,⊥Σ2

5

Σ2(i) = int

Σ2 ⊢M(l3),nn♯,lt♯ i : int ,⊤ Σ2(a) = int []
Σ2(i) = int int <: int

¬(nn♯M(l3)
(a) ∧ −1 lt♯M(l3) i ∧ i lt♯M(l3) len(a))

Σ2 ⊢M,nn♯,lt♯ (a[i] := 0)l3 ⇒ Σ2,⊥Σ2

6
Σ2 ⊢M(l4),nn♯,lt♯ i+ 1 : int ,⊤

Σ2 ⊢M,nn♯,lt♯ (i := i+ 1)l4 ⇒ Σ2,⊤

7
[5] [6]

Σ2 ⊢M,nn♯,lt♯ (a[i] := 0)l3 ; (i := i+ 1)l4 ⇒ Σ2,⊥Σ2

8
[4] [7] Σ2 <: Σ2

Σ2 ⊢M,nn♯,lt♯ (while i < len(a) {(a[i] := 0)l3 ; (i := i+ 1)l4})l2 ⇒ Σ2,⊥Σ2

Figure 8: Subderivations

precise possible.

[1]
[2] [8]
. . .

∅ ⊢M,nn♯,lt♯ c =⇒ Σ2,⊥Σ2

Simple Non-nil Analysis It is easy to envision an analysis that is able to
detect that a 6= nil after the first line; given such an analysis the type system
would be able to rule out exceptions in the controlling expression of the while
i < len(a), but not in the array assignment (a[i] := 0)l3 , since the analysis
cannot see that the index is within bounds. Given the result M of such an
analysis and a sound non-nil decision procedure nn♯ it is clear that nn♯M(l3)(x)
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and nn♯M(l4)(x) hold. Thus, derivation (3) above can be replaced by

Σ2(a) = int [] nn♯M(l2)(a)

Σ2 ⊢M(l2) len(a) : int ,⊤

This, however, does not affect the resulting exception type of c, since we do not
differentiate between different sources of exceptions; if we did, we would — with
some minor changes to the type rule for array assignment — be able to rule out
the possibility on nil-pointer exceptions in c.

Simple Array Index Analysis To rule out the presence of exceptions in c
entirely some kind of array bounds analysis is needed in addition to the nil-
pointer analysis; for c even rather simplistic analyses are able to see that i is
always within the bounds of the array pointed to by a. We form a new analysis
by pairing the nil-pointer analysis with the array bound analysis; the result of
the new analysis M is a map from labels to pairs of abstract environments—one
from each analysis, nn♯ is left projection composed with the decision procedure
for the non-nil analysis, and similarly lt♯ is right projection composed with
the decision procedure for the array bounds analysis. Given an environment
map M of the combined analysis, a sound non-nil decision procedure nn♯ and
a sound array bound decision procedure lt♯, it is clear that nn♯M(l3)(x), and

nn♯M(l4)(x) ∧ −1 lt♯M(l4) 0 ∧ 0 lt♯M(l4)
len(a) hold. Thus, as above, derivation (3)

above can be replaced by

Σ2(a) = int [] nn♯M(l2)(a)

Σ2 ⊢M(l2) len(a) : int ,⊤

and derivation (5) can be replaced with

Σ2(i) = int

Σ2 ⊢M(l3),nn♯,lt♯ i : int ,⊤ Σ2(a) = int []
Σ2(i) = int int <: int

nn♯M(l3)(a) −1 lt♯M(l3) i i lt♯M(l3)
len(a))

Σ2 ⊢M,nn♯,lt♯ (a[i] := 0)l3 ⇒ Σ2,⊥Σ2

Now, since the the array size expression len(a) in derivation (3), and the array
assignment (a[i] := 0)l3 in derivation (5) were the only sources of exceptions the
following derivation is valid.

[1]
[2] [8]
. . .

∅ ⊢M,nn♯,lt♯ c =⇒ Σ2,⊤

where the exception types of derivation (4), (7) and (8) are changed accordingly.
Thus, we see how the additional information about the program’s execution —
nil-pointer information, and array bound information — is used in the derivation
of an exception free type of c.
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Abstract

We present a general way of making use of may- and must-alias infor-
mation to achieve flow-sensitive type systems that allow for flow-sensitivity
on the heap. In particular, we show how may-alias information can be
used for a limited form of flow-sensitivity — structural weakening — that
allows type changes on the heap that are compatible with the subtype
hierarchy. Further, we show how the combination of may- and must-alias
information can be used to achieve strong updates, i.e., type changes on
the heap that are not compatible with the subtype hierarchy, resembling
the typical type rule for updates of variables in flow sensitive type sys-
tems. This work has been enabled by the use of our plugin framework —
a framework for parameterizing type systems over the results of abstract
interpretations — that allows us to abstract away from the computation
of the alias information. In addition, our successful use of the plugin
mechanism to extract both may- and must-alias information shows its
strength.

1 Introduction

One dimension of program analyses is flow-sensitivity; the result of a flow-
sensitive analysis depends on the order of the instructions of a program, whereas
the result of a flow-insensitive analysis does not. Frequently, flow-sensitive anal-
yses achieve higher precision than flow-insensitive.

Even though type systems are predominantly flow-insensitive, flow-sensitive
type systems arise naturally, as shown by, for example, linear and affine type
systems [Pie05]. A more well-known example of a flow-sensitive type system is
the type system of Java bytecode where the limited number or registers forces
(from a practical standpoint) the type system to be able to change the types of
registers; each instruction is typed in a pre- and a post-type, and the assignment
instruction changes the type of the target register in the post type to the type
of the source value.

The static flow-sensitivity of Java bytecode is limited to registers for a reason;
aliasing prohibits the flow-sensitivity to easily extend to the heap. To be able to
change types on the heap, e.g., the type of a field of a certain object, it must be
made sure that the types of all aliased locations are changed, otherwise a way of

113
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freely casting between the types by writing into one location and reading from
another is introduced. Thus, for instance, it is not safe to extend the subtyping
relation to arrays, i.e., to say that String[] is a subtype of Object[] because
String is a subtype of Object, since that would allow casting from the type
Object to the type String1.

The standard solution for this is to enforce invariant typing for all heap loca-
tions, involving both prohibiting type changes based on updates, and restraining
the subtype relation to invariant subtyping for arrays, and width subtyping for
objects [Pie02].

From a practicality standpoint, width subtyping is good enough for ”stan-
dard” types. For information flow security it is not necessarily the case. Whereas
the need to freely change the types of parts of the heap may seem far fetched,
i.e., from a boolean to an integer, the need to change a location from hold-
ing public integers to holding secret integers is not as unreasonable, especially
considering that, unlike standard types, information flow types are intrinsically
flow sensitive. In addition to this, there are important extensions to basic
information-flow security that rely on flow-sensitivity [HS08].

Contribution We present a general method for making use of may- and must-
alias information to allow for flow-sensitive types on the heap. Whereas previous
work has tried to combine the computation of the alias information and its usage,
we use our recently proposed abstract-interpretation plugin framework [GH08]
to decouple the computation and the usage of the alias information. This allows
us to use the alias information in a general and clear way, while at the same time
allowing us to instantiate the resulting type system with different alias analyses
— from the most basic ones to, e.g., the most elaborate shape analyses.

The main contributions of this paper are that we 1) show how the plugin
framework can be used to carry over structural information about the heap,
2) show how may-alias information can be used to formulate a structural sub-
typing rule, and 3) show how may- and must-alias information can be used in
combination to allow for strong updates on the heap, i.e., updates that do not
follow the subtype hierarchy.

Outline The paper is laid out as follows. Section 2 introduces the language,
Section 3 recapitulates the needed parts of the method of parameterization, and
Section 4 introduces the basic type system and the correctness statements —
in particular preservation of types. Section 5 discusses the basic idea of flow-
sensitive heap types, defines the used representation of may- and must-alias
information — structural environments — and their semantics, and shows how
structural heaps can be extracted from the parameterized alias information.
Section 6 contains the first use of may-alias information to achieve a limited
form of flow-sensitive heap types. The basic idea is to use the may-aliases
to form a structural subtyping rule, where all symbolic locations that may be
aliased are guaranteed to have the same type view, which guarantees that all

1Java does allow this, which forces a runtime check when storing objects into arrays.
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concrete environments will be width well-formed. Section 7 shows how may-
and must-alias information can be combined to support strong updates if the
updated location is in an isolated cluster of must-pointers. Finally, Section 8
discusses related work, and Section 9 concludes.

2 Language

The language used to illustrate our method is a small imperative language with
records.

Syntax Let f range over field names, b range over booleans, i range over
integers, and x range over variable names. The syntax of the language is defined
as follows, where A ranges over record type names.

Expressions e ::= nil | b | i | x | e1 ⋆ e2 | x.f
Commands c ::= x := e | x1.f := x2 | if e c1 c2 | c1; c2 |

while e c | x := new(A) | skip

Values The environments are pairs of stores s and heaps h. The stores are
maps from variables x to values v, and the heaps are maps from pointers p to
records r. The records are maps from field names to values. Finally, the values
are made up by booleans, integers and pointers; the error lifted values, ranged
over by v⊥, are either values or ⊥ indicating an error. We impose the restriction
that heaps may not associate the null-pointer to anything, i.e., the null-pointer
must not be in the domain of any heap.

v ::= b | i | p
E ::= (s, h)

r ::= {f1 7→ v1, . . . , fn 7→ vn}
s ::= {x1 7→ v1, . . . , xn 7→ vn}
h ::= {p1 7→ r1, . . . , pn 7→ rn}

Let r.f denote r(f), and for E = (s, h), let E(x) denote s(x), E[x 7→ v] denote
(s[x 7→ v], h), E(p) denote h(p), and similarly for other operations on environ-
ments including variables or pointers.

Semantics We assume a simple reduction semantics for expressions of the
form 〈E, e〉 ⇓ v⊥.

The semantics of commands is given in terms of a small step semantics
between configurations with transitions of the form 〈E, c〉 → C, where C is either
one of the terminal configurations ⊥E and E indicating abnormal and normal
termination in the environment E, respectively, or a non-terminal configuration
〈E, c〉. Figure 1 contains the semantic rules for commands, where rec(A) creates
a fresh record of type A with all fields set to 0 or nil, depending on their type —
we assume the existence of a map ∆ from record type names to structural record
types (defined in Section 4 below). The origin of this map is not significant for
this work, and, thus, left unspecified, but is typically created from the program
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〈E, x := v〉 → 〈E[x 7→ v], skip〉

s(x1) = nil

〈(s, h), x1.f := x2〉 → ⊥(s,h)

s(x1) = p h(p) = r s(x2) = v

〈(s, h), x1.f := x2〉 → 〈(s, h[p 7→ r[f 7→ v]]), skip〉

〈E, if true c1 c2〉 → 〈E, c1〉 〈E, if false c1 c2〉 → 〈E, c2〉

〈E,while e c〉 → 〈E, if e (c;while e c) skip〉

r = rec(A) p 6∈ dom(h)

〈(s, h), x := new(A)〉 → 〈(s[x 7→ p], h[p 7→ r]), skip〉

〈E, skip; c〉 → 〈E, c〉

Figure 1: Semantic rules for commands

source, possibly in combination with a system specific map. The record name
map is invariant under the execution of the program, and is left implicit in the
rest of this paper.

Following [GH08] we extend the command language with label annotations
to track how environments flow in and out of commands during execution and
add the following rules for reduction of labeled commands. Let l range over
labels drawn from the set of labels L. A command c can be annotated with
an entry label (c)l , an exit label (c)l , or both (c)l1l2 . In the following, c ranges

over possibly annotated commands, i.e., (c)l denotes a command with at least
an entry label l , and similarly for exit labels. For while-loops decorated with
an entry label we add the following reduction rule.

〈E, (while e c)l〉 → 〈E, (if e (c; (while e c)l ) skip)l 〉

For commands decorated with entry labels that are not while-loops, and for skip
decorated with an exit label we add the following reduction rules.

〈E1, c1〉 → 〈E2, c2〉

〈E1, (c1)
l 〉 → 〈E2, c2〉 〈E, (skip)l〉 → 〈E, skip〉

As is common for small step semantics we use evaluation contexts R to
determine the position of the next computation step.

R ::= · | x := R | if R c c | R; c | (R)l

The accompanying standard reduction rules, found in Figure 2, allow for left-
most reduction of sequences, error propagation, reduction of expressions inside
commands and reduction of commands under exit labels.
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〈E, e〉 ⇓ v

〈E,R[e]〉 → 〈E,R[v]〉

〈E, e〉 ⇓ ⊥

〈E,R[e]〉 → ⊥E

〈E1, c1〉 → 〈E2, c2〉

〈E1, R[c1]〉 → 〈E2, R[c2]〉

〈E, c〉 → ⊥E

〈E,R[c]〉 → ⊥E

Figure 2: Semantic Rules for Contexts

3 Parameterization

Before presenting the type system we recapture the fundamental parts of the
method of parameterization. For a more thorough exposition see [GH08].

Abstract Environment Maps Let E range over some form of abstract en-
vironments with an associated concretization function γ, mapping abstract en-
vironments to sets of concrete environments. An abstract environment map is
a map from labels to abstract environments. We say that an abstract envi-
ronment map M is an entry/exit solution with respect to a command c1 and
a concrete environment E1 if it represents all environments flowing into/out of
each command as follows where is is the predicate for entry solutions and os
the predicate for exit solutions.

isE1
c1

(M) ≡ ∀E2 , c2 . 〈E1 , c1 〉 →∗ 〈E2 ,R[(c2 )l ]〉 =⇒
E2 ∈ γ(M(l))

osE1
c1

(M) ≡ ∀E2 . 〈E1 , c1 〉 →
∗ 〈E2 ,R[(skip)l ]〉 =⇒

E2 ∈ γ(M(l))

The definition is lifted to sets of initial environments C in the obvious way.

Plugins Properties and Plugins A plugin property R⋄ is a family of ex-
pression liftings of a relation R on values, defined in the following way.

(e1, . . . , en) ∈ R⋄
E ≡ 〈E, e1〉 ⇓ v1 ∧ · · · ∧ 〈E, en〉 ⇓ vn =⇒ (v1, . . . , vn) ∈ R

Plugin properties define the meaning of the plugins, in the sense that the plugins
are approximations of the plugin properties.

A plugin is a family of relations on expressions indexed by abstract envi-
ronments. R♯ is said to be a plugin for R⋄ given that the following property
holds.

(e1, . . . , en) ∈ R♯E =⇒ ∀E ∈ γ(E). (e1, . . . , en) ∈ R⋄
E

The plugin framework cannot be used to directly transfer alias information.
In Section 5 we show algorithmically how equality and inequality information
about pointers can be used to build may- and must-alias views of the heap,
respectively. Thus, in this paper we will be using two plugins: one for may-alias
extraction corresponding to lifted pointer inequality, and one for must-alias
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extraction corresponding to lifted pointer equality (excluding the null-pointer).
Let R6= denote plugins for pointer inequality, and let R− denote plugins for
pointer equality. For convenience, let R+ denote the negation of the pointer
inequality plugin — two pointers that cannot be shown to be unequal must be
assumed to be aliased.

4 Type System

The type system introduced in this section is used as the base for two differ-
ent extensions: structural weakening and strong updates which we investigate
separately in Section 6 and Section 7 respectively.

Type Language The primitive types, ranged over by τ , are the type of
booleans bool, the type of natural numbers nat, the type of integers int , and
the pointer types, represented by record type names A. The record types ω
are maps from fields to primitive types. As mentioned above, ∆ is a map from
record type names to record types. The store types, ranged over by Σ, are maps
from variables to primitive types. The exception types, ranged over by ξ, are
⊥Σ, indicating the possibility that an exception is thrown in the environment
type Σ, and ⊤ indicating that no exception is thrown. This is a simplification
from typical models of exceptions, where multiple types are used to indicate the
reason for the exception. However, for our purposes this model suffices — the
results are easily extended to a richer model.

τ ::= bool | nat | int | A
ξ ::= ⊥Σ | ⊤

ω ::= {f1 7→ τ1, . . . , fn 7→ τn}
Σ ::= {x1 7→ τ1, . . . , xn 7→ τn}
∆ ::= {A1 7→ ω1, . . . ,An 7→ ωn}

Subtyping We define two standard subtype relations: width subtyping <:w
and width-depth subtyping <:d. For brevity, we will use the term depth subtyp-
ing to refer to width-depth subtyping in the rest of this paper. Most of this
paper is only concerned with width subtyping; thus, when not explicitly marked
otherwise, <: refers to width subtyping.

Width subtyping provides a uniform type view of the heap, see, for instance,
invariant subtyping for ML references [Pie02], which is needed to support updates
in the presence of aliases2; see below for a more thorough explanation.

Common to both width subtyping and depth subtyping are the rules for
primitive types, exception types, and store types.

τ <:w/d τ nat <:w/d int

ξ <:w/d ξ ⊤ <:w/d ⊥Σ

Σ1 <:w/d Σ2

⊥Σ1
<:w/d ⊥Σ2

∀x ∈ dom(Σ2). Σ1(x) <:w/d Σ2(x)

Σ1 <:w/d Σ2

2In the absence of additional analyses.
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The difference between the relations is captured by the rules for subtyping
of record types. Width subtyping allows records to be seen as smaller records
while retaining the types of the remaining fields, i.e., bigger record types are
subtypes of smaller given that all fields in the domain of the smaller record type
are mapped to the same types in both the smaller and the bigger, while depth
subtyping demands that all fields in the domain of the smaller are mapped to
types that are depth subtypes of the corresponding types in the smaller record
type.

∀f ∈ dom(ω2). ω1.f = ω2.f
ω1 <:w ω2

∀f ∈ dom(ω2). ω1.f <:d ω2.f
ω1 <:d ω2

The subtyping relations naturally induce a subtype relation on record type
names. Thus, even though the system introduced so far is nominal, we use
structural subtyping, defined on record identifiers as the smallest relation on
record names <:w/d satisfying:

∆(A1) <:w/d ∆(A2)

A1 <:w/d A2

This is in contrast to the more frequent use of pure nominal subtyping, where
the programs explicitly declare what record names are subtypes of each other.

Width versus Depth Subtyping The subtyping relation defines when ob-
jects of one type can be safely seen as having another type. For instance, it is
perfectly safe to view a natural number as an integer, since the set of integers
include all natural numbers. It may seem natural to extend the subtyping rela-
tion to records based on the same subset argument; after all, the set of records
with a field f holding a natural numbers is included in the set of records with
the same field f holding an integer.

Such an extension of the subtyping relation to records is provided by depth-
subtyping and is, in fact, perfectly sound in the presence of aliases as long as
we only read from the records. However, in the presence of aliases and updates,
depth subtyping is not sound, as illustrated by the following program where
∆(A) = {f : nat} and ∆(B) = {f : int}.

A x := new A; B y := (B) x; y.f := -1; nat z := x.f;

In this example and the following examples we will use A, B, C, . . . as record
type names, and x, y, z, . . . as variable names. In addition, for clarity, we will
allow type annotations, type casts, and field assignment of constants — neither
is necessary, but allows the examples to be more concise. For example, in the
above program the cast in the assignment y := (B) x is needed to change the
type of x to B before the assignment. Otherwise, the type of y would simply be
overwritten by the type of x, i.e., A, since variable updates are flow-sensitive.

The example first creates a record with a field f of type natural numbers.
Using depth subtyping we create an alias to the record with an integer field
type. As noted above, reading the field via x and y is still sound - x has a more
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Σ ⊢ e : τ, ξ

Σ ⊢† x := e⇒ Σ[x 7→ τ ], ξ

Σ(x1) = A Σ(x2) = τ
τ <: ∆(A).f

Σ ⊢† x1.f := x2 ⇒ Σ,⊥Σ

Σ1 ⊢ e : bool, ξ Σ1 ⊢† c1 ⇒ Σ2, ξ Σ1 ⊢† c2 ⇒ Σ2, ξ

Σ1 ⊢† if e c1 c2 ⇒ Σ2, ξ

Σ ⊢ e : bool, ξ Σ ⊢† c⇒ Σ, ξ

Σ ⊢† while e c⇒ Σ, ξ

Σ1 ⊢† c1 ⇒ Σ2, ξ Σ2 ⊢† c2 ⇒ Σ3, ξ

Σ1 ⊢† c1; c2 ⇒ Σ3, ξ

Σ ⊢† x := new(A) ⇒ Σ[x 7→ A],⊤

Σ ⊢† skip ⇒ Σ,⊤

Σ2 ⊢† c⇒ Σ3, ξ1
Σ1 <: Σ2 Σ3 <: Σ4 ξ1 <: ξ2

Σ1 ⊢† c⇒ Σ4, ξ2

Figure 3: Type Rules for Commands

precise type, viewing the field as a natural number while y views it as an integer.
However, the types permit us to update the field with an integer via y, and to
read the written integer as a natural number via x, effectively introducing a cast
going the opposite direction of the subtype hierarchy. Thus, a weakening rule
as the one found in Figure 3 but based on depth subtyping rather than width
subtyping is unsound.

It should be pointed out that writing is sound using a depth subtyping
rule with the subtype of the fields inverted, i.e., we can view a record with an
integer field as a record with a natural number field — all natural numbers
are also integers and limiting the values that can be written into the field is
unproblematic. For this reason reading is known as being co-variant, i.e., that
sound subtyping with respect to reading extends structurally in the same way,
and writing is known as being contra-variant, i.e., that sound subtyping with
respect to writing extends structurally in the opposite way [Pie02]. In a system
where the same type governs both reading and writing, the types of the fields
must be both co-variant and contra-variant, i.e., they must be invariant. This
is represented by the width subtyping that demands equality on the types of the
fields, which implies invariance, since the subtyping relation is reflexive.

Expression Type Rules The typing judgment for expressions, Σ ⊢ e : τ, ξ,
is read as the expression e is well-typed in the environment type Σ, with return
type τ possibly resulting in exceptions as indicated by ξ. The type rules for the
expressions are entirely standard, and omitted for brevity.
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δ ⊢ b : bool δ ⊢ i : int

i ≥ 0

δ ⊢ i : nat

δ ⊢ nil : A

δ(p) <: A

δ ⊢ p : A

∀(f, τ) ∈ ω. δ ⊢ r.f : τ

δ ⊢ r : ω

∀(x, τ) ∈ Σ. δ ⊢ s(x) : τ

δ ⊢ s : Σ

∀(p,A) ∈ δ. δ ⊢ h(p) : ∆(A)

δ ⊢ h
δ ⊢ s : Σ δ ⊢ h
δ ⊢ (s, h) : Σ

δ ⊢ v : τ
δ ⊢ v : τ, ξ δ ⊢ ⊥ : τ,⊥Σ

δ ⊢ E : Σ2

δ ⊢† ⊥E : Σ1,⊥Σ2

Σ1 ⊢† c⇒ Σ2, ξ δ ⊢ E : Σ1

δ ⊢† 〈E, c〉 : Σ2, ξ

Figure 4: Well-formedness

Command Type Rules The type system for commands is flow sensitive;
each command is typed with respect to a pre and a post environment type.
The typing judgment for commands, Σ1 ⊢MI ,MO,R+,R−

c ⇒ Σ2, ξ is read as the
command c is well-typed with respect to the abstract environment maps MI , andMO, the plugin R+, and the plugin R− in the environment type Σ1 resulting
in the environment type Σ2, possibly resulting in an exception as indicated by
ξ. The standard type rules for commands are shown in Figure 3, where ⊢†

is used as short form for ⊢MI ,MO,R+,R−

. The standard type system serves as
the foundation for the extension with rules for structural weakening and strong
updates.

4.1 Correctness

As is done by Pierce [Pie02] we split the correctness argument into two the-
orems, progress — intuitively, that well-typed commands and expressions are
able to execute in all environments that conform to, i.e., are well-formed with
respect to, the entry environment type of the command or expression — and
preservation — intuitively, that the result of running the command or expres-
sion conforms to the exit environment type of the same. Together, progress
and preservation guarantee proper execution of well-typed programs in all well-
formed environments; progress and preservation repeatedly guarantee one step
of execution, and that the result is well-formed.

Well-formedness We define two well-formedness relations, one correspond-
ing to width subtypes, and one corresponding to depth subtypes. More precisely,
well-formedness is formulated as a family of relations between values and types,
indexed over pointer typings. The pointer typings, ranged over by δ, are maps
from pointers to record type names and make the well-formedness relation induc-
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tively definable also for cyclic heaps. The rules for well-formedness are found in
Figure 4, where ⊢† is used as short form for ⊢MI ,MO,R+,R−

. The well-formedness
relations are entirely standard; the interaction between the well-formedness rela-
tion for stores and heaps, together with the well-formedness relation for records
guarantees that if an environment is well-formed with respect to a store type
and a pointer typing, then the pointer typing types at least all live (reachable)
pointers.

Progress and Preservation of Expressions Preservation of expressions
expresses that well-typed expressions preserve well-formedness under execution,
i.e., for an expression e such that Σ ⊢ e : τ, ξ, running e in Σ-well-formed
environments will result in τ, ξ-well-formed values.

Theorem 4.1 Preservation of Types of Expressions

Σ ⊢ e : τ, ξ =⇒ δ ⊢ E : Σ ∧ 〈E, e〉 ⇓ v⊥ =⇒ δ ⊢ v⊥ : τ, ξ

Proof 4.1 By induction over the derivation of Σ ⊢ e : τ, ξ. The proof is entirely
standard and is omitted for brevity.

Progress of expressions expresses that well-typed expressions are able to
execute in correspondingly well-formed environments, i.e., for an expression e
such that Σ ⊢ e : τ, ξ it is possible to run e in any Σ-well-formed environment.

Theorem 4.2 Progress of Expressions

Σ ⊢ e : τ, ξ =⇒ δ ⊢ E : Σ =⇒ ∃v⊥.〈E, e〉 ⇓ v⊥

Proof 4.2 By induction over the derivation of Σ ⊢ e : τ, ξ. The proof is entirely
standard and is omitted for brevity.

Together progress and preservation for expressions guarantee that well-typed
expressions are able to run in correspondingly well-formed environments, and
that the results are well-formed.

Progress and Preservation of Commands Preservation of types of com-
mands is formulated in essentially the same way as for expressions, i.e., for
a command c such that Σ1 ⊢† c ⇒ Σ2, ξ, running c in any Σ1-well-formed
environment that is in any set of initial environments C which makes MI an
entry solution and MO an exit solution for c will result in a Σ2, ξ-well-formed
configuration.

Theorem 4.3 Preservation of Types of Commands

Σ1 ⊢MI ,MO ,R+,R−

c⇒ Σ2, ξ ∧ isCc (MI ) ∧ osCc (MO ) =⇒

E ∈ C ∧ δ1 ⊢ E : Σ1 ∧ 〈E, c〉 → C =⇒ ∃δ2. δ2 ⊢† C : Σ2, ξ
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Proof 4.3 By induction on the derivation of Σ1 ⊢MI ,MO,R+,R−

c ⇒ Σ2, ξ. The
proof is entirely standard since the standard type rules do not make use of the
parameterized information and is omitted for brevity.

Progress of commands expresses that well-typed commands are able to run
in correspondingly well-formed environments, i.e., for a command c such that
Σ1 ⊢† c⇒ Σ2, ξ, it is possible to run c in any Σ1-well-formed environment.

Theorem 4.4 Progress of Commands

Σ1 ⊢MI ,MO ,R+,R−

c⇒ Σ2, ξ ∧ isCc (MI ) ∧ osCc (MO ) =⇒

E ∈ C ∧ δ ⊢ E : Σ1 =⇒ ∃C. 〈E, c〉 → C

Proof 4.4 By induction on the derivation of Σ1 ⊢MI ,MO,R+,R−

c ⇒ Σ2, ξ. The
proof is entirely standard since the standard type rules do not make use of the
parameterized information and is omitted for brevity.

As above progress and preservation interact to guarantee successful execu-
tion of well-typed commands in well-formed environments. Let 〈E, c〉 →n C be
the obvious lifting of the small step evaluation to evaluation of n consecutive
steps. We formulate the top-level correctness of commands, that well-typed
commands terminate in well-formed environments or result in well-formed con-
figurations regardless of the number of execution steps, in the following way,
where T ranges over terminal configurations.

Theorem 4.5 Top-level Correctness of Commands

Σ1 ⊢MI ,MO ,R+,R−

c1 ⇒ Σ2, ξ ∧ isCc1
(MI ) ∧ osCc1

(MO ) =⇒

E1 ∈ C ∧ δ1 ⊢ E1 : Σ1 ∧ 〈E1, c1〉 →
n C =⇒

∃δ2 . δ2 ⊢MI ,MO,R+,R−

C : Σ2, ξ

Proof 4.5 The proof of top-level correctness for commands proceeds by induc-
tion over the number of execution steps. The proof is completely independent on
the parameterized information, and thus valid for all possible parameterizations
and proceed by induction over the number of execution steps. For brevity we
refer to [GH08] for the details of the proof.

5 Heap Types and Aliases

The type system presented in Section 4 allows the types of the variables to
change; after an assignment to a variable, the type of the variable becomes the
type of the expression that was assigned to the variable. This is an example of a
flow-sensitive type system. As discussed, this type scheme does not immediately
extend to records. Instead, it is common to demand type invariance for heap
locations to guarantee a uniform type view of the heap.
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Let sl range over symbolic locations, defined as follows.

sl ::= x | sl.f

The meaning of the symbolic locations with respect to a concrete environment is
defined by recursive dereference. In a given environment, each symbolic location
refers at most one concrete location, but different symbolic locations may refer
to the same concrete location. When this occurs, we say that the symbolic
locations are aliased.

This section explores the details of the interaction between aliases and sub-
typing in the presence of reading and writing, and how alias information can be
obtained using the plugin framework. The following two sections show how this
information can be used to achieve a certain degree of the freedom enjoyed by
variable types — simplified, the alias information is used to make sure that all
aliased locations agree on the type.

5.1 Flow-sensitive Heap Types

Consider the flow-sensitive type rule for variable assignment from Section 4.

Σ ⊢ e : τ, ξ

Σ ⊢† x := e⇒ Σ[x 7→ τ ], ξ

The soundness of this rule relies on the fact that each variable is stored at a
unique place in the store, which is not shared by any other variables. Thus,
writing to a variable does not modify the value, and hence neither the type, of
any of the other variables.

A similar rule for records on the heap is not immediately possible in the
presence of aliasing. Similar to above, if such a rule is provided we have a direct
way of making a single concrete location seen as having two different types. As
shown above, such a situation is equivalent to having a way of freely casting
between the two types by writing into the concrete location via one symbolic
location, and reading from the other symbolic location, as illustrated by the
following program assuming that ∆(A) = {f : int}.

A x := new A; A y := x; y.f := true ; int z := x.f;

First, x and y are initialized to point to the same record. Thereafter, the field
of that record is updated with a boolean via y, causing the type of y to become
{f : bool}. Integers written via x can now be read as booleans via y, and vice
versa.

5.2 Alias Information

Alias information is information about which symbolic locations may be or
are guaranteed to be aliased with each other. There are two forms of aliases,
may- and must -aliases, corresponding to whether two symbolic locations may
be aliased, i.e., it cannot be ruled out that they are aliased, or must be aliased,
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i.e., they are always aliased. Intuitively, if x and y are may-aliased then it may
be the case that in one of the program runs x and y contain the same pointer.
On the other hand if x and y are must-aliased then it must be the case that
they contain the same pointer in every program run.

There are two common forms of alias information: as a map from program
points to 1) relations on symbolic locations, or 2) structural environments —
see [Deu94] for references of both methods.

In the former, if a pair of symbolic locations (sl1, sl2) are related for some
program point labeled with l then, in the may-alias case, it cannot be excluded
that sl1 and sl2 contain the same concrete pointer at l in some program run,
and, in the must-alias case, it must be the case that sl1 and sl2 contain the
same pointer at l in all program runs. To keep the alias information finite in
the presence of cycles, two important properties of (both may- and must-) alias
information are used. The first property is a form of substitutivity property

(sl1, sl2) ∧ (sl3, sl4) =⇒ (sl3[sl1/sl2], sl4[sl1/sl2]) (1)

which expresses that if sl1 and sl2 are aliased then one can form new aliases by
replacing sl1 with sl2 in other aliases. For example, if (x, y) and (x, x.f), then
we know from this rule that (y, y.f). This property subsumes transitivity, since
if (sl1, sl2) and (sl2, sl3) then (sl1, sl3). The second property

(sl1, sl2) =⇒ (sl1.f, sl2.f) (2)

expresses that anything reachable from an alias is also an alias.
For our purposes the second form of alias information — the structural

environments — is more convenient to work with. The idea behind structural
environments is to have an abstract representation that captures information
about the common structure of a set of concrete environments. This is achieved
by using abstract structural pointers with the property that (may- and must-)
aliased symbolic locations contain the same structural pointer.

Syntax of Structural Environments The syntax of the structural environ-
ments follows the syntax of the values, with pointers represented by abstract
pointers, and all other values represented by an abstract dummy.

v̂ ::= p̂ | •

Ê ::= (ŝ, ĥ)

r̂ ::= {f1 7→ v̂1, . . . , fn 7→ v̂n}
ŝ ::= {x1 7→ v̂1, . . . , xn 7→ v̂n}

ĥ ::= {p̂1 7→ r̂1, . . . p̂n 7→ r̂n}

That is, the structural values v̂ are either structural pointers, ranged over by p̂,
or any other value represented by •. A structural record r̂ is a map from field
names to structural values, a structural store ŝ is a map from variable names to
structural values, and a structural heap ĥ is a map from structural pointers to
structural records. Finally, the structural environments Ê are pairs of structural
stores and heaps.
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May-alias interpretation We define the may-alias meaning of the structural
heaps in terms of a may-alias concretization function γ+. In the following we
will drop the superscript when possible without risk of confusion. Let ξ range
over maps from structural pointers to non-empty sets of concrete pointers. To
make sure that different structural pointers get mapped to different concrete
pointers we parameterize the concretization function over a structural pointer
valuation with pairwise disjoint codomain, excluding the null-pointer. We say
that such pointer valuations are may-alias sound.

Definition 5.1 (May-alias sound pointer valuation) A pointer valuation
ξ is may-alias sound if it does not map anything to the null-pointer and has a
pairwise disjoint codomain, i.e.

∀p̂1, p̂2 ∈ dom(ξ) . p̂1 6= p̂2 =⇒ ξ(p̂1) ∩ ξ(p̂2) = ∅

Let ξ+ range over the set of may-alias sound pointer valuations.

Let V\p be the set of concrete values excluding the pointers. The concretiza-
tion for primitive values is defined as follows.

γ+
ξ+(•) = V\p γ+

ξ+(p̂) = ξ+(p̂) ∪ {nil}

The concretization function is extended structurally while allowing all pos-
sible combinations of concrete pointers as defined by the pointer valuation.
For records we let γ+

ξ+(r̂) = {r | f ∈ dom(r̂), r.f ∈ γ+
ξ+(r̂.f)}, and similarly

for stores γ+
ξ+(ŝ) = {s | x ∈ dom(ŝ), s(x) ∈ γ+

ξ+(ŝ(x))}. For heaps we let

γ+
ξ+(ĥ) = {h | p̂ ∈ dom(ĥ), p ∈ ξ+(p̂), h(p) ∈ γ+

ξ+(ĥ(p̂))}. Finally, we define

γ+
ξ+(Ê) for environments by combining the results from the concretization func-

tions for heaps and stores using the same pointer valuation.
The set of concrete environments associated with one particular structural

environment is the union over all may-alias sound pointer valuations.

γ+(Ê) =
⋃

ξ+

{γ+
ξ+(Ê)}

Must-alias interpretation The concretization function above defines the
meaning of may-aliases; with a small change in the interpretation of the struc-
tural values we can define the meaning of must-aliases. Let γ− denote the
concretization function for must-aliases. As above when there is no risk of con-
fusion the superscript is dropped. A pointer valuation is must-alias sound if all
sets in its codomain are singleton.

Definition 5.2 (Must-alias sound pointer valuation) A pointer valuation
is must-alias sound if all sets in its codomain are singleton and do not contain
the null-pointer, i.e.

∀p̂ ∈ dom(ξ) . |ξ(p̂)| = 1

Let ξ− range over must-alias sound pointer valuations.
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For structural values we define the must-alias concretization function as

γ−ξ−
(•) = V γ−ξ−

(p̂) = ξ−(p̂)

with the difference that, unlike V\p, V ranges over the set of all concrete values
including the pointers. The structural extension of the concretization function
to structural environments is done in exactly the same way as above.

As before, the set of concrete environments associated with one particular
structural environment is the union over all valid pointer valuations.

γ−(Ê) =
⋃

ξ−

{γ−ξ−
(Ê)}

This means that the must-alias information only conveys information about
which pointer locations must be equal — it does not rule out any other aliases,
and considers all locations to be possibly aliased with any other location.

5.3 Plugins are Under Approximations

Sound may-alias information can be seen as an over approximation of the pos-
sibly aliased locations, i.e., it is safe to consider more locations to be aliased
than actually are.

When designing plugin properties for probing may-alias information we must
take into consideration that plugins are by definition under approximations, and
as such not suitable for probing over approximations — if two locations are not
marked as being aliases the conclusion is that they are unaliased, however a
plugin may by definition freely exclude locations from the relation, making this
conclusion invalid.

The solution to this is to use the dual interpretation of may-aliases — must-
not aliases — i.e., the under approximation of guaranteed unaliased locations.
Thus, instead of using equality on pointers as the relation for our plugin property
we use inequality.

5.4 Extracting May-Aliases

Using the may-alias plugin R+ defined above we can extract may-alias informa-
tion by a traversal rooted in the variables of pointer type.

The algorithm takes a may-alias plugin R, an abstract environment aenv, a
list of previously visited symbolic locations vs, a structural environment which
is modified during the traversal env, and a work list of symbolic locations yet
to be visited ls. Each iteration removes the topmost symbolic location of the
work list, and checks it against all previously visited symbolic locations. If
it is guaranteed to be unaliased with all previous locations a fresh structural
pointer is introduced and the symbolic location associated with it; otherwise,
the symbolic location is associated with the structural pointer of the found
previous location. Whenever a new symbolic location is introduced all relevant
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succeeding symbolic locations (the fields of pointer type) are added at the end
of the work list.

In the pseudo code below, lookup env v gets the structural pointer associ-
ated with v in the structural environment env, env[p -> *] returns an updated
version of env where p is associated with an initialization record that is type
compatible with the location associated with p, i.e., the fields of pointer type
are empty (they will be updated by subsequent iterations) and all other fields
contain •, env[l -> p] returns an updated version of env where the location l

is associated with the structural pointer p, and fields of l returns the list of
symbolic locations of the fields of l of pointer type3.

extract _ _ _ env [] = env

extract aenv R vs env (l:ls) =

case find (not . R aenv l) vs of

None -> p = fresh pointer

env ’ = env[p -> *][l -> p]

lfs = f i e l d s of l

extract aenv R (l:vs) env ’ (ls++ lfs)

Some v -> p = lookup env v

env ’ = env[l -> p]

extract aenv R vs env ’ ls

We define the extraction function η+ for may-aliases in terms of the above
extract function as follows, where initΓ is the list of initial symbolic locations
— the variables of pointer type (as given by the store type).

η+(E,R+,Γ) = extract E R+ [ ] ([ ], [ ]) initΓ

Thus, η+(E,R+,Γ) extracts a may-alias view of E, using R+ starting in the
variables given pointer types by Γ.

The correctness of the algorithm relies on the substitutivity property of
the may-alias information. Termination of the algorithm relies on the abstract
environment and the number of fields being finite and every non-terminated
path of field references in the may-alias information containing a cycle, i.e.,
there must not be an infinite number of unaliased locations; a formal definition
of this cyclic path property is found in Appendix A. For each underlying may-
alias information there exist plugins for which these properties hold.

5.5 Extracting Must-Aliases

Similar to above, we can extract must-alias information using the must-alias
plugin R−.

The algorithm takes a must-alias plugin R, an abstract environment aenv,
a list of previously visited symbolic locations vs, a a structural environment
which is modified during the traversal env, and a work list of symbolic locations
yet to be visited ls. Each iteration removes the topmost symbolic location of

3All aliased locations are required to have the same type.
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the work list, and checks it against all previously visited symbolic locations. If
it is must-aliased with any of the previously inspected symbolic locations it is
associated with the structural pointer of the found previous location; otherwise,
it is checked whether it is must-aliased with itself, which would imply that it
is guaranteed not to be a null-pointer4. If it is must-aliased with itself a fresh
structural pointer is introduced and the symbolic location associated with it. If
it is not then the symbolic location is associated with •.

extract _ _ _ env [] = env

extract aenv R vs env (l:ls) =

case find (not . R aenv l) vs of

None -> i f R aenv l l then

p = fresh pointer

env ’ = env[p -> *][l -> p]

lfs = f i e l d s of l

extract aenv R (l:vs) env ’ (ls++ lfs)

e l se

env ’ = env[l -> •]
extract aenv R vs env ’ ls

Some v -> p = lookup env v

env ’ = env[l -> p]

extract aenv R vs env ’ ls

The extraction function η− for must-aliases is defined in the same way as
the extraction function for may-aliases and correctness and termination of the
algorithm rely on the same properties.

6 Structural Weakening

This section details how may-alias information can be used to safely weaken the
types of heap locations. The section begins with two examples that show why a
naive extension of the standard weakening rule is unsound, and how structural
alias information can be used to provide a sound weakening rule by demanding
that all aliased locations are subject to the same type changes. Thereafter, we
introduce the basis for the weakening, the decorating structural well-formedness
— essentially a well-formedness relation for structural values — and show how
it can be used to create a sound weakening rule. The section ends with a small
example illustrating the use of the weakening rule.

As we saw in Section 4, a weakening rule based on depth-subtyping is not
sound in the presence of aliases and updates. The problem is that depth-
subtyping makes it possible to create different type views of aliased symbolic
locations. Without alias information we are forced to impose an invariant type
view of all locations that may be aliased using width-subtyping; with may-alias
information it is possible to relax this demand and demand an invariant type
view only on the locations that are may-aliased.

4This is the case since the plugin for must-alias excludes the null-pointer.
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To illustrate this, assume a set of concrete environments S, e.g., the set of
environments reaching a certain program point in a particular program. Assume
that x and y are may-aliased and that x and y are unaliased with z, i.e., there
exist at least one environment in S, where x and y point to the same record,
and in no environments in S does z point to the same record as x or y. Assume
further that all of x, y and z point to records of one field f holding a natural
number, i.e., that the environments in S are well-formed in Σ1 = {x : A, y : A, z :
A}, where ∆(A) = {f : nat}. The possible heaps in S (up-to type constrained
isomorphism and omitting null-pointers) can be illustrated as follows.

It is clear that we can safely change the types of x and y to hold an integer as
long as we change both, i.e., all environments in S are well-formed in Σ2 = {x :
B, y : B, z : A}, where ∆(B) = {f : int}.

To see how structural may-alias information can be used to achieve this consider
the structural representation of the situation above: ŝ = {x 7→ p̂1, y 7→ p̂1, z 7→

p̂2}, with ĥ = {p̂1 7→ {f 7→ •}, p̂2 7→ {f 7→ •}}.

As can be seen in the picture and as was described in Section 5.2 all locations
that may be aliased contain the same structural pointer. Thus, the same ideas
underlying width well-formedness for concrete environments can be used for
structural may-alias information to ensure a uniform type-view for all may-
aliased locations.

Decorated Structural May-Aliases We define the well-formedness relation
for structural may-aliases following the standard well-formedness; in addition
we let the structural well-formedness produce a type decorated version of the
structural environment — the use of the decoration will become apparent below.
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Ω ⊢ • : τ y •τ , τ ∈ {nat, int , bool}
Ω(p̂) <: A A <: Ω(p̂)

Ω ⊢ p̂ : A y p̂

(f, τ) ∈ ω. Ω ⊢ r̂.f : τ y r̂d.f
dom(r̂) = dom(r̂d) = dom(ω)

Ω ⊢ r̂ : ω y r̂d

∀(x, τ) ∈ Σ. Ω ⊢ ŝ(x) : τ y ŝd(x)
dom(ŝ) = dom(ŝd) = dom(Σ)

Ω ⊢ ŝ : Σ y ŝd

∀(p̂,A) ∈ Ω. Ω ⊢ ĥ(p̂) : ∆(A) y ĥd(p̂)

dom(ĥ) = dom(ĥd) = dom(Ω)

Ω ⊢ ĥ y ĥd

Ω ⊢ ŝ : Σ y ŝd Ω ⊢ ĥ y ĥd

Ω ⊢ (ŝ, ĥ) : Σ y (ŝd, ĥd)

Figure 5: Decorating Structural Well-formedness

The language for the decorated structural may-aliases is identical to the
language for the structural may-aliases with the addition of a type decoration
on all occurrences of •:

v̂ ::= p̂ | •τ

When needed we use v̂d, r̂d, ŝd, ĥd, and Êd to distinguish decorated values,
records, stores, heaps and environments from the undecorated structural may-
alias counterparts.

Concretization of Decorated Structural May-Aliases The concretiza-
tion is constrained to the meaning of the type annotation, instead of all values
apart from the pointers

γ+
ξ+(•τ ) = [[τ ]]

where [[nat]] is the set of natural numbers, [[int ]] the set of integers, and [[bool]]
the set of booleans.

Decorating Structural Well-formedness Let Ω range over structural pointer
typings, i.e., maps from structural pointers to record identifiers. The rules for
the decorating structural well-formedness are found in Figure 5, and are easily
extended to decorated structural values by replacing the rule for • with:

τ1 <: τ2
Ω ⊢ •τ1

: τ2 y •τ1

τ1, τ2 ∈ {nat, int , bool}

The decorating structural well-formedness has two important properties. First,
the type decoration does not exclude any well-formed environments.



132 Tobias Gedell and Daniel Hedin

Lemma 6.1 (Stability of Type Decoration)

Ωmax ⊢ Ê : Σ y Êd ∧ δ ⊢ E : Σ ∧ E ∈ γ+(Ê) =⇒ E ∈ γ+(Êd)

where Ωmax denotes the maximal Ω with respect to which Ê is well-formed in
Σ. See Appendix B for details.

Proof 6.1 First, E ∈ γ+(Ê) implies the existence of ξ+ such that E ∈ γ+
ξ+(Ê).

Now, Lemma B.2 gives us that E ∈ γ+

ξ+

E,Σ

(Ê). The result is immediate from

Lemma B.7, and Lemma B.9.

Second, well-formedness is preserved by concretization of the decorated struc-
tural environment. Let δΩ,ξ+ be the pointer typing induced by Ω and ξ+, i.e.,

δΩ,ξ+(p) = Ω(ξ+
−1

(p)). We know that ξ+
−1

exists, since all may-alias sound
pointer valuations are injective.

Lemma 6.2 (Preservation of Well-formedness under Concretization)

Ω ⊢ Êd : Σ ∧ E ∈ γ+
ξ+(Êd) =⇒ δΩ,ξ+ ⊢ E : Σ

Proof 6.2 Given that E = (s, h) we must show that δΩ,ξ+ ⊢ s : Σ, and that
δΩ,ξ+ ⊢ h. The result is immediate from Lemma C.3, and Lemma C.5.

One way of viewing the decorated structural may-alias representation is as a
may-alias aware environment type, i.e., an environment type where types have
been specialized to the may-alias structure. The following picture of the stan-
dard type view to the left and the decorated structured may-alias environment
from the example above to the right illustrates this idea.

It is easy to see how the structural may-alias information limits the freedom of
the types as illustrated by the following picture showing three different environ-
ment types and a structural environment (rightmost). The structural environ-
ment gives a limit to the maximal possible type structure in the sense that it
defines which symbolic locations must have the same types. Thus, intuitively,
the two leftmost environment types are compatible, but not the third, since the
third tries to give x and y different types — A3 and A2 respectively.
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For a more detailed explanation, assume that A1, A2, and A3 are different.
The first example can be accommodated by choosing A4 = A5 = A1 and thus
τ4 = τ5 = τ1, the second example by choosing A4 = A2 and A5 = A1, and thus
τ4 = τ2 and τ5 = τ1, whereas the third example cannot be accommodated, since
that would imply choosing A4 and τ4 to two different types corresponding to
different type views for aliased locations.

With this view the well-formedness for decorated structural values can be
used to formulate something that can be seen as a constrained depth-subtype
relation. To see this let Ω1 ⊢ Ê : Σ1 y Êd∧Ω2 ⊢ Êd : Σ2 be written Σ1 <: bE Σ2.
We have the following semantic property.

Lemma 6.3 (Structural Subtype)

Σ1 <: bE Σ2 ∧ E ∈ γ+
ξ+(Ê) ∧ δ ⊢ E : Σ1 =⇒ ∃δ. δ ⊢ E : Σ2

Proof 6.3 We have that (1) Ω1 ⊢ Ê : Σ1 y Êd, (2) Ω2 ⊢ Êd : Σ2, (3) E ∈

γ+
ξ+(Ê), and (4) δ ⊢ E : Σ1

First, Lemma 6.1 together with (1, 4, 3) gives us that (5) E ∈ γ+
ξ+(Êd). Now,

Lemma 6.2 together with (2, 5) gives us that δΩ2,ξ+ ⊢ E : Σ and we are done.

To illustrate the use consider the example from above where ŝ = {x 7→

p̂1, y 7→ p̂1, z 7→ p̂2}, with ĥ = {p̂1 7→ {f 7→ •}, p̂2 7→ {f 7→ •}}, Σ1 = {x :
A, y : A, z : A} and Σ2 = {x : B, y : B, z : A}, where ∆(A) = {f : nat}, and
∆(B) = {f : int}. In this example the two steps of Σ1 <:(bs,bh) Σ2 are {p̂1 7→

A, p̂2 7→ A} ⊢ (ŝ, ĥ) : Σ1 y (ŝd, ĥd), and {p̂1 7→ B, p̂2 7→ A} ⊢ (ŝd, ĥd) : Σ2,

for ŝd = ŝ and ĥd = {p̂1 7→ {f 7→ •nat}, p̂2 7→ {f 7→ •nat}}, since nat <: int ,
as illustrated by the following picture, where the subtyping annotations express
the demands put on the structural environments by Σ1 in the middle structural
environment and Σ2 in the rightmost structural environment.

The picture illustrates how Σ1 has decorated the the original structural envi-
ronment (ŝ, ĥ), and how Σ2 is able to change the type view of x and y to a super
type of the previous type recorded by the decorated structural environment.

Structural Weakening Based on this we can create a new weakening rule
based on well-formedness where the structural representations of the entry and
exit environments of a command c are used to ensure that all aliased pointers
have compatible type views. Let MI and MO range over entry and exit solutions,
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respectively, and let η+ be the may-alias extraction function.

Σ2 ⊢MI ,MO,R+,R−

c⇒ Σ3, ξ1 ξ1 <: ξ2
Σ1 <:η+(MI (l1),R+,Σ1) Σ2 Σ3 <:η+(MO(l2),R+,Σ3) Σ4

Σ1 ⊢MI ,MO,R+,R−

(c)l1l2 ⇒ Σ4, ξ2

We prove soundness of the structural weakening rule by proving preservation of
types for it.

Lemma 6.4 (Preservation of Types of Structural Weakening)

Σ1 ⊢MI ,MO ,R+,R−

c⇒ Σ2, ξ ∧ isCc (MI ) ∧ osCc (MO ) =⇒

E ∈ C ∧ δ1 ⊢ E : Σ1 ∧ 〈E, c〉 → C =⇒

∃δ2. δ2 ⊢MI ,MO,R+,R−

C : Σ2, ξ

Proof 6.4 Assume (1) Σ1 ⊢MI ,MO,R+,R−

c ⇒ Σ2, ξ, (2) isCc (MI ), (3) osCc (MO ),
(4) E ∈ C, (5) δ1 ⊢ E : Σ1 and (6) 〈E, c〉 → C.

(1) gives (7) Σ′
1 ⊢MI ,MO,R+,R−

c⇒ Σ′
2, ξ

′, (8) ξ′ <: ξ, (9) Σ1 <:η+(MI (l1),R+,Σ1)

Σ′
1, and (10) Σ′

2 <:η+(MO(l2),R+,Σ′

2
) Σ2.

(2) and (4) gives (13)E ∈ γ+(MI(l1)) which together with soundness of the
extraction function for may-aliases gives (14)E ∈ γ+

ξ+

1

(η+(MI(l1),R
+,Σ1)) for

some ξ+1 . From this Lemma 6.3 (11)δ′1 ⊢ E : Σ′
1 for some δ′1. Now the induction

hypothesis is applicable, which gives (12) δ2 ⊢ C : Σ′
2, ξ for some δ2. We proceed

with an analysis of (12).

abnormal termination This case gives δ2 ⊢ E2 : Σe for some Σ3, where
C = ⊥E3

, which immediately gives δ2 ⊢ ⊥E2
: Σ′

2,⊥Σ3
.

termination This case gives δ2 ⊢ E2 : Σ′
2, where C = E2. From osCc (MO ), we

get that E2 ∈ γ+(MO(l2)), and, thus, from the soundness of the extraction
function that E2 ∈ γ+

ξ+

2

(η+(MO(l2),R+,Σ′
2)) for some ξ+2 . Similar to above

Lemma 6.3 gives δ′2 ⊢ E2 : Σ2, for some δ′2 which gives us that δ′2 ⊢ E2 :
Σ2, ξ from which the result is immediate.

non-termination This case gives Σ3 ⊢MI ,MO,R+,R−

c′ ⇒ Σ′
2 for some Σ3, and

δ2 ⊢ E : Σ3. In the same way as above we establish that δ′2 ⊢ E2 : Σ2 for

some δ′2. It now remains to show that Σ′ ⊢MI ,MO,R+,R−

c′ ⇒ Σ2, which is
immediate from the structural weakening rule.

Example Use We end this section with a small example of the use of struc-
tural weakening for achieving a limited form of flow-sensitive types on the heap.
Assuming ∆(A) = {f : nat} consider the following program, which is not ty-
pable in the standard type system since int is not a subtype of nat.

A x = new A; A y := x; x.f := 0; x.f := -1;
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However, even a simplistic alias analysis is able to determine that x and y are
may-aliased, and unaliased with all other locations. This means that before
x.f := −1 the type of x and y can be weakened to B, given that ∆(B) = {f :
int}, which allows us to perform the update. Since all aliases have their types
changed uniformly, the pitfall of introducing the possibility of casting values is
avoided.

7 Strong Updates

This section shows how may-alias information and must-alias information can
be combined to allow for heap updates that do not follow the subtype hierarchy
— similar to the updates of variables where the variable type environment is up-
dated with the type of the value written into the variable. This differs from the
structural weakening of the previous section, where the structure of the environ-
ments was used to express which types soundly described the environments, and
the update was supported by finding a type in which the update was supported.
For strong updates the actual update is more central; the old environment is
typically not well-formed in the new environment type, and vice versa. Consider
the following tiny program, which is typable in pre-type Σ1 = {x : τ} for any
type τ , and post-type Σ2 = {x : bool} using the flow sensitive type rule for
variables.

x := 0; x := true ;

Clearly, after assigning a boolean to x the environment is not typable in the
post-type of x := 0, in which the type of x is nat.

The soundness of the flow-sensitive type rule for variables comes from the
fact that no variables are aliased. In the same way, if a structural (may-) pointer
is uniquely associated with a symbolic location we know that that symbolic lo-
cation is alias free and can safely be strongly updated. However, demanding
that a location is completely unaliased to support strong updates is unnecessar-
ily restrictive. For instance, if we know that all aliases to the symbolic location
are must-aliases, we know that a strong update is safe, given that we change
the type of all must-aliases accordingly. Thus, it would be natural to expect
the following program to be typable in the empty pre-type { } and post-type
{x : B, y : B}, where ∆(A) = {f : τ} for some τ , and ∆(B) = {f : bool}.

A x := new A; A y := x; x.f := true ;

The previous section showed how may-alias information can be used to support
weakening, and how weakening can be used to support a limited form of flow sen-
sitive types. This was achieved by the use of a structural width well-formedness
relation that guaranteed concrete width well-formedness. To fit with the re-
sults of the previous section, and with the correctness proof of the standard
type system we will use preservation of width well-formedness as the base for
the correctness argument of this section. This restricts the result to updates of
must-aliased location that are not reachable via may-aliases. This restriction is
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justified by the fact that the presence of may-aliases would constrain the update
to follow the sub-type hierarchy, which together with the demand of concrete
width well-formedness would result in the same expressive power as structural
weakening.

Combined May- and Must-alias Information The approach we consider
is based on a sound merge of may- and must-alias information that guarantees
that the must-aliased heap locations are not reachable via may-aliases. In short,
this is achieved by annotating the pointers in the structural environment as
either may-alias pointers or must-alias pointers and making sure that must and
may aliases never concretize to the same concrete pointer.

As before we introduce the syntax, the semantics in form of a concretization
function and decorating structural well-formedness; for brevity we only present
the changes to what has previously been presented. First, the syntax for struc-
tural values is extended to contain both structural may-alias pointers p̂+ and
structural must-alias pointers p̂−.

v̂ ::= p̂− | p̂+ | •

The separation between must and may aliases is achieved by demanding shared
pointer valuations with pairwise disjoint codomains with the additional demand
that the pointer valuations map all must-alias pointers to singleton sets, and to
limit the concretization of • to non-pointer values. The demand that the pointer
valuations are pairwise disjoint also for must-aliased pointers is not a restriction
since two must-aliased pointers that concretize to the same concrete pointer is
by definition may-aliased and may-aliases have priority over must-aliases in the
merged alias information.

Definition 7.1 (May- and Must-alias sound pointer valuations) Let p̂
range over structural may-alias pointers and structural must-alias pointers.

p̂ ::= p̂+ | p̂−

A pointer valuation ξ is may- and must-alias sound if it has pairwise disjoint
codomain that does not contain the null-pointer and maps all structural must-
alias pointers to singleton sets.

∀p̂1, p̂2 ∈ dom(ξ) . p̂1 6= p̂2 =⇒ ξ(p̂1) ∩ ξ(p̂2) = ∅ ∧ ∀p̂− ∈ dom(ξ) . |ξ(p̂−)| = 1

Let ξ∗ range over may- and must-alias sound pointer valuations.

The meaning of the combined may- and must-alias information is formulated in
terms of a concretization function γ∗.

γ∗ξ∗(•) = V\p γ∗ξ∗(p̂+) = ξ∗(p̂+) ∪ {nil} γ∗ξ∗(p̂−) = ξ∗(p̂−)

Similarly to before we form a decorated version of the structural values, stores
and heaps by annotating • with a type. The concretization is changed accord-
ingly to γ∗ξ∗(•τ ) = [[τ ]], where [[int ]] is the set of integers, [[nat]] the set of natural
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numbers, and [[bool]] the set of booleans. The set of concrete environments as-
sociated with one particular combined structural environment is the union over
all may- and must-alias sound pointer valuations.

γ∗(Ê) =
⋃

ξ∗

{γ∗ξ∗(Ê)}

The decorating structural well-formedness for the combined may- and must-
alias information is immediate both for the undecorated syntax and the deco-
rated syntax, using the rule for structural may pointers of Figure 5 for structural
may pointers, and the rules for the undecorated •, and the decorated •τ from
Section 6 above.

Ω ⊢ • : τ y •τ , τ ∈ {nat, int , bool}

τ1 <: τ2
Ω ⊢ •τ1

: τ2 y •τ2

τ1, τ2 ∈ {nat, int , bool}

Ω(p̂−) = A1 A1 <: A2

Ω ⊢ p̂− : A2 y p̂−
Ω(p̂+) <: A A <: Ω(p̂+)

Ω ⊢ p̂+ : A y p̂+

The structural well-formedness of the extended structural language have the
same properties as the structural well-formedness for may-aliases of the previous
section.

Lemma 7.1 (Stability of Type Decoration)

Ωmax ⊢ Ê : Σ y Êd ∧ δ ⊢ E : Σ ∧ E ∈ γ∗(Ê) =⇒ E ∈ γ∗(Êd)

Proof 7.1 First, E ∈ γ∗(Ê) implies the existence of ξ∗ such that E ∈ γ∗ξ∗(Ê).

Now, Lemma B.2 gives us that E ∈ γ∗ξ∗

E,Σ
(Ê). The result is immediate from

Lemma B.7, and Lemma B.9.

Lemma 7.2 (Preservation of Well-formedness under Concretization)

Ω ⊢ Ê : Σ ∧ E ∈ γ∗ξ∗(Ê) =⇒ δΩ,ξ∗ ⊢ E : Σ

Proof 7.2 Given that E = (s, h) we must show that δΩ,ξ∗ ⊢ s : Σ, and that
δΩ,ξ∗ ⊢ h. The result is immediate from Lemma C.3, and Lemma C.5 below.

Merging May and Must Alias Information A structural may-alias envi-
ronment, and a structural must-alias environment are mergeable with respect to
a merge function f if the concretization of the merged result is conservative. Let
Ê+ range over structural may-alias environments, and Ê− range over structural
must-alias environments.

γ+(Ê+) ∩ γ−(Ê−) ⊆ γ∗(f(Ê+, Ê−))
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An abstract environment E is mergeable with respect to a merge function f , a
may plugin R+, a must plugin R−, and an environment type Σ, if the extracted
may- and must-alias environments are mergeable. We define the function merge
as merge(E,R+,R−,Σ) = f(η+(E,R+,Σ), η−(E,R−,Σ)) given that E is merge-
able with respect to f , R+, R−, and Σ, and undefined otherwise. It is always
possible to find merge functions, e.g., simply using the may-alias information
is sound, possibly with the additional optimization that unique may-aliases are
replaced by must-aliases as discussed above. For generality, in the following we
parameterize over the merge function.

Strong Updates Using the combined may- and must-alias information we can
create a flow-sensitive field update rule from the flow-insensitive counterpart.
First, consider the type rule for field updates from Section 4 above.

Σ(x1) = A Σ(x2) = τ τ <: ∆(A).f

Σ ⊢ x1.f := x2 ⇒ Σ,⊥Σ

Using the ideas outlined above, we can extract the merged alias-information;
if the merge succeeds we know that the result is an accurate representation
of the concrete environments reaching the command. Further, we know by
construction that must-alias pointers form semi-isolated subgraphs in the heap
in the sense that no may alias pointer points into the subgraphs, but may very
well point out from it, as illustrated below, where + indicates may-aliases and
− must-aliases. For the may-alias pointer p̂+, represented by the dashed line
in the figure, to point to the same position as the must-alias pointer p̂−, they
must be equal, i.e., p̂+ = p̂−, which is clearly not possible.

The basic idea is to perform the update in the type decorated structural
representation of the environment and making sure that the new structural
environment is well-formed with respect to the exit type. Let updf (p̂−, v̂, Ê) =

(ŝ1, ĥ2) given that Ê = (ŝ1, ĥ1), r̂1 = ĥ1(p̂
−), r̂2 = r̂1[f 7→ v̂], and ĥ2 = ĥ1[p̂

− 7→
r̂2], i.e., the result of updating the field f with v̂ in the record pointed to by p̂−

in Ê, defined identically for concrete environments. The rule for strong updates
is defined as follows.

Ω1 ⊢ merge(MI(l),R+,R−,Σ1) : Σ1 y (ŝ1, ĥ1)
ŝ1(x1) = p̂− ŝ1(x2) = v̂

Ω2 ⊢ updf(p̂−, v̂, (ŝ1, ĥ1)) : Σ2

Σ1 ⊢MI ,MO ,R+,R−

(x1.f := x2)
l ⇒ Σ2,⊥Σ1
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The soundness of this rule relies on one important property for updates over
must-aliases that expresses the soundness of the structural update.

Lemma 7.3 (Stability of Must-update under Concretization)

{updf(p, v, E) | E ∈ γ∗ξ∗(Ê), p ∈ γ∗ξ∗(p̂−), v ∈ γ∗ξ∗(v̂)} = γ∗ξ∗(updf(p̂−, v̂, Ê))

Proof 7.3 Since the store is unaffected by the update is suffices to show that
the property holds for heaps, which is shown in the following lemma.

Lemma 7.4 (Stability of Must-update under Heap Concretization)

{h[p 7→ r] | h ∈ γ∗ξ∗(ĥ), p ∈ γ∗ξ∗(p̂−), r ∈ γ∗ξ∗(r̂)} = γ∗ξ∗(ĥ[p̂− 7→ r̂])

Proof 7.4 The proof relies on the facts that ξ∗ has a pairwise disjoint codomain
and γ∗ξ∗(p̂−) is a singleton set not containing the null-pointer, since p̂− is a
must-alias. Let {p} be this set. Intuitively, the reasoning is as follows. On

the left hand side we have that in all heaps in the concretization of ĥ, p points
to one of the concretizations of ĥ(p̂−). Similarly, on the right hand side we

have that in all heaps in the concretization of ĥ[p̂− 7→ r̂], p points to one of

the concretizations of r̂. Now, if we take the concretization of ĥ and update p
to point to a record in the concretization of r̂ then we get the same set as the
concretization of ĥ[p̂ 7→ r̂].

If p̂− was concretized to more than one concrete pointer, we would on the
left hand side add heaps where only one of the concrete pointers is updated to
point to records in the concretization of r̂, the other would still point to records
in the concretization of ĥ(p̂−).

If ξ∗ did not have a pairwise disjoint codomain, p might be in the concretiza-
tion of more structural pointers than p̂. This would require r to not only be in
the concretization of r̂ but also in the concretization of each structural record
pointed to by the additional structural pointers, something that in general would
not be the case.

To see why the proof does not hold for may-aliases, it helps to illustrate why
it holds for must-aliases. In fact, we can easily justify that {updf(p, v, E) | E ∈

γ∗ξ∗(Ê), p ∈ γ∗ξ∗(p̂+), v ∈ γ∗ξ∗(v̂)} ⊇ γ∗ξ∗(updf (p̂+, v̂, Ê)), i.e., that the struc-
tural update is no longer guaranteed to be a sound approximation of the up-
date. This comes from the fact that γ∗ξ∗(updf(p̂+, v̂, Ê)) only generates heaps

where the records pointed to by all pointers p ∈ γ∗ξ∗(p̂+) are updated whereas

{updf(p, v, E) | E ∈ γ∗ξ∗(Ê), p ∈ γ∗ξ∗(p̂+), v ∈ γ∗ξ∗(v̂)} only updates the record

pointer to by p. Consider the following example, where ŝ = {x 7→ p̂+
1 , y 7→ p̂+

1 },

with ĥ = {p̂+
1 7→ {f 7→ •nat}}.
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As described, the possible heaps concretized from (ŝ, ĥ) (ignoring null-pointers)
can be illustrated as follows.

Updating the rightmost heap by x.f := true, i.e., s1 7→ {x 7→ p1, y 7→ p2}, and
h1 = {p1 7→ {f 7→ n2}, p 7→ {f 7→ n3}} results in a new heap h2 7→ {p1 7→
{f 7→ true}, p 7→ {f 7→ n3}}, illustrated below, i.e., where the record pointed
to by y remains unchanged, since x and y were not aliased in this particular
environment.

However, updf (p̂+, v̂, Ê) = (ŝ, ĥ3), where ĥ2 7→ {p̂1 7→ {f 7→ •bool}, will only
produce environments of the following form.

This problem does not occur with must-aliases, since must-aliased locations are
guaranteed to alias, i.e., ŝ = {x 7→ p̂−1 , y 7→ p̂−1 }, with ĥ = {p̂−1 7→ {f 7→
•nat}} will only concretize to environments of the following structure, which are
correctly modeled by the structural update.

With this, we prove the soundness of the strong update rule by proving its
case in a preservation of types proof in the same way as in Section 6 above.
Again, since the rule preserves width well-formedness under the assumption
that the weakened command also preserves width well-formedness it can safely
be added to the type system in Figure 3.

Lemma 7.5 (Preservation of Types of Strong Updates)

Σ1 ⊢M1,M2,η+,η−

x1.f := x2 ⇒ Σ2, ξ∧

isCc (MI ) ∧ osCc (MO ) =⇒

∀E ∈ C. δ1 ⊢ E : Σ1 ∧ 〈E, x1.f := x2〉 → C =⇒

∃δ2. δ2 ⊢ C : Σ2, ξ
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Proof 7.5 Assume an E ∈ C, such that (1) δ1 ⊢ E : Σ1, and (2) 〈E, x1.f :=
x2〉 → C. We must show that δ2 ⊢ C : Σ2, ξ for some δ2.

(2) gives two possible cases: 1) the execution fails due to x1 containing a
null-pointer, and 2) the execution succeeds and C = updf (p, v, E) = (s, h[p 7→
r[f 7→ v]] for E = (s, h). The first case is a simple exception propagation, and
we focus on the second case in the following.

First, the soundness of the merge function gives us that together with (1)

and Lemma 7.1 gives that E ∈ γ∗ξ∗(ŝ1, ĥ1) for some pointer valuation ξ∗, which

also gives that p ∈ γ∗ξ∗(p̂−), and v ∈ γ∗ξ∗(v̂), since p̂− = ŝ(x1), and v̂ = ŝ(x2).

We have that updf(p, v, E) ∈ γ∗ξ∗(updf (p̂−, v̂, (ŝ1, ĥ1))) from Lemma 7.3, and
the result is immediate from Lemma 7.2.

Example Use We end this section with a variation of the example of the
previous section. Assuming ∆(A) = {f : nat} we saw how the following program
was typable using structural weakening, by weakening the type of x and y to
B, where ∆(B) = {f : int}.

A x = new A; A y := x; x.f := 0; x.f := -1;

As discussed, structural weakening is limited to type changes that are supported
by the subtype hierarchy. Thus, the following minor modification to the program
makes the program untypable using structural weakening.

A x = new A; A y := x; x.f := 0; x.f := true ;

As in the case above, even a simplistic alias analysis is able to determine that
x and y are not only may-aliases but also must-aliases, and unaliased with
all other locations. This means that the type rule for strong updates can be
used to type x.f := true which results in x and y getting the type B, where
∆(B) = {f : bool}. The strong update is safe, since we know that x and y
contain the same pointer in all program runs, and that this pointer is different
from all other pointers.

8 Related Work

Using alias information to improve the precision of other analysis is widespread,
e.g., [ABB06, CG93, CCL+96, LH98, PC04, FTA01, DF01, SWM99, WM01].
Common to most of these analyses is that they compute the needed alias in-
formation; our approach allows for the alias analysis to be parameterized, al-
lowing different alias analyses to be plugged in with relative ease. Of the above
mentioned work only the work on extending single static assignment (SSA) to
non-scalar variables [CCL+96, CG93, LH98] uses parameterized information. It
would be interesting to investigate to which extent the plugins framework could
benefit the rest of the analyses.

Most closely related is the work by Smith, Walker and Morrisett [SWM99].
Therein they develop a pseudo-linear type system for alias types allowing for
limited flow-sensitive types of aliased locations, and safe deallocation. With
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respect to the type change, our work is a generalization of theirs; their flow-
sensitivity is limited to linear types, and a very specific extension using dynamic
type checking.

Also related is the work by Foster, Terauchi and Aiken [FTA01] on infer-
ring flow-sensitive type qualifiers. Even though they limit their work to type
qualifiers nothing seems to prohibit their method to be applied to the full types
instead of only the qualifiers. Again our work generalizes their work with re-
spect to the use of alias information for flow-sensitivity, since they restrict the
flow-sensitivity to linear types; it would be interesting to see to which extent
our ideas could be used to generalized their approach.

In [ABB06] Amtoft, Bandhakavi and Banerjee develop a hoare-style logic
for reasoning about noninterference. In particular, the logic contains region
assertions — a simple form of alias analysis — used to increase the precision of
the analysis.

In [HS06] Hunt and Sands study a flow-sensitive type system for information
flow security; their work shows us that there exists a most general lattice for
each program — the powerset lattice of the variables — and that, for a simple
imperative language with variables, one can form a type based transformation
from the flow-sensitive type system to a flow-insensitive one. This suggests
that flow-sensitivity might not be necessary for information flow security. The
transformation does, however, rely on the ability of easily cloning the contents of
variables, and statically allocating more variables to hold the values of different
types. This is not always possible, or practical. For instance, in many JVM
implementations the number of simultaneously live variable is limited.

With respect to the computation of alias information, see the work on shape
analysis by Sagiv, Reps and Wilhelm [SRW96], or Walker and Morrisett [WM01]
on recursive alias types. For a more recent result on shape analysis see the
work by Yang et al. [YLB+08]. This work focuses on combining precision
and scalability for use in the verification of device drivers and contains many
interesting references to real world application of pointer analyses. For a more
standard exposition of alias analysis see, e.g., [Deu94].

9 Conclusion

We have presented a way to allow for flow-sensitive types on the heap based on
our plugin framework. In particular we have shown how may-alias information
can be used to support structural weakening, where information about may-
aliases is used to allow for a safe use of depth-subtyping in the subtyping rule,
which made it possible to change the types of heap locations while retaining a
uniform type view of all may-aliases, thus guaranteeing conformance with the
concrete width well-formedness. Structural weakening only supports changing
heap location type to more general types.

We have also shown how the combination of may- and must-alias information
can be used to support strong updates, i.e., updates that do not have to follow
the subtyping hierarchy. This was done by using a combined representation of
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may-alias and must-alias information that guaranteed that no location was both
must-and may-aliased with any other location.

In addition to this we have shown how may- and must-alias information can
be extracted using our plugin framework. The use of the plugin framework
has very much contributed to the generality of this work by forcing us to think
abstractly about may- and must-aliases, and by allowing us a flexibility of ex-
ploring many different type rules with relative ease coming from the fact that
the rules are free from the computation of alias information, only containing its
usage.
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A Cyclic Path Property

The path property path(sl1 . . . sl2), expressing that the symbolic location sl2 can
be reached from the symbolic location sl1 by a number of field references, is
defined as follows where fs(sl) returns the set of pointer fields of the symbolic
location sl.

path(sl) ≡ true
path(sl1 . . . sln) ≡ path(sl1 . . . sln−1) ∧

∃f ∈ fs(sln−1). sln−1.f = sln

The cyclic property cyclic(sl1 . . . sln,R), expressing that there exists two
unique locations sli and slj in sl1 . . . sln such that they are related by the plugin
R, is defined in the following way.

cyclic(sl1 . . . sln,R) ≡ ∃i, j ∈ [1 . . . n]. i 6= j ∧ (sli, slj) ∈ R

Finally, we define the cyclic path property cyclicp(R), expressing that the
plugin R has an upper limit n on the length of acyclic paths.

cyclicp(R) ≡ ∃n. ∀sl1 . . . sln. path(sl1 . . . sln) =⇒ cyclic(sl1 . . . sln,R)

B Stability of Type Decoration

This section contains the proofs of stability of type decoration of the structural
may-aliases of Section 6, and the combined structural may- and must-aliases of
Section 7 — the former language is a sublanguage of the latter. In this section
all pointer valuations are may- and must-alias sound, why the ∗ superscript is
dropped from ξ∗ throughout.

Definition B.1 (Ω order) We define an order ≤ on abstract pointer typings
as follows.

p̂ ∈ dom(Ω2). Ω1(p̂) <: Ω2(p̂)

Ω1 ≤ Ω2

The intuition behind the order is that bigger abstract pointer typings place less
demands on structural environment.

Lemma B.1 (Maximal Ω) For a given structural environment Ê, there exists
a unique maximal (up to type constrained isomorphism) Ωmax, such that

Ω ⊢ Ê : Σ =⇒ Ω ≤ Ωmax ∧ Ωmax ⊢ Ê : Σ

Proof B.1 The intuition is that increasing abstract pointer typings place less
demands on the structural environment, and that the maximal abstract-pointer
typing for a given well-formed structural environment is given by Σ.

First, it is clear that for a given Ω there exists a maximal abstract-pointer
typing Ωmax obtainable by repeatedly choosing bigger pointer typings until no
bigger exists in which Ê is still Σ well-formed.
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Now, assume that there exists two different maximal pointer typings Ωmax1

Ωmax2
. It is clear that neither Ωmax1

≤ Ωmax2
, nor Ωmax2

≤ Ωmax1
, since in

such case one of them would not be maximal. Thus, there exists at least one
abstract pointer p̂ occurring at a symbolic location l, such that Ωmax1

(p̂) <: Σ(l),
and Ωmax2

(p̂) <: Σ(l), but with Ωmax1
(p̂) and Ωmax2

(p̂) incomparable. Because
of the use of width-subtyping we know that all shared fields of Ωmax1

(p̂), and
Ωmax2

(p̂) must be equal.
This gives us that Ωmax1

(p̂) has a field not in Ωmax2
(p̂) and vise versa. How-

ever, the incompatible fields are not forced by Σ(l), given by Ωmax1
(p̂) <: Σ(l),

and Ωmax2
(p̂) <: Σ(l), which means Ωmax1

(p̂) and Ωmax2
(p̂) are not maximal

— they can both be replaced by Ωmax1
(p̂) ⊓ Ωmax2

(p̂) <: Σ(l).
The maximal abstract pointer typing Ωmax is easily obtained by a fixed-point

iteration.

Pointers not being live require special care when establishing stability of type
decoration. To illustrate this, consider the case where ŝ(x) = p̂, ĥ(p̂) = {f 7→ •},
ξ(p̂) = {p1, p2}, Σ(x) = A and ∆(A) = {f : int}.

All heaps in the concretization of ĥ will have both p1 and p2 in its domain.
In all heaps that are well-formed with respect to Σ, the well-formedness relation
will require that the pointer that x contains will point to a record containing a
value that is well-formed with respect to the type int . The other pointer will,
however, not have any requirements placed on it since it will not be live.

However, in the concretization of the type decorated version of the heap,
ĥ(p̂) = {f 7→ •int}, both p1 and p2 will be required to point to records containing
values that are well-formed with respect to the type int .

This means that type decoration does not preserve concretizations for all
pointer valuations. In order to work around this, we restrict ourselves to only
consider the live pointers. This is reasonable to do, since a pointer that is
not live is semantically safe to ignore. More, specifically, noting that the well-
formedness relation only places requirements on pointers that are typed by Σ,
we limit ourselves to only consider pointers that are live and that are given a
type by Σ. We do this by defining Σ-reachability.

Definition B.2 (Σ-reachability) We say that p is Σ-reachable in E, written
p ∈ EΣ, if there exists a δ such that δ ⊢ E : Σ and there exists a symbolic
location l such that Σ(l) is defined and E(l) = p.

When establishing stability of type decoration this is done with respect to a
pointer valuation ξ whose codomain only consists of Σ-reachable pointers. We
call such a ξ minimal and define it in the following way.

Definition B.3 (Minimal ξ) For each environment E ∈ γξ(Ê) such that δ ⊢
E : Σ, we define the minimal pointer valuation ξE,Σ to be the sub-valuation of
ξ that only contains the pointers Σ-reachable in E.

∀p̂ ∈ dom(ξ), p ∈ ξE,Σ(p̂). p ∈ ξ(p̂) ∧ p ∈ EΣ
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Lemma B.2 (ξE,Σ preserves E)

Ω ⊢ Ê : Σ ∧ E ∈ γξ(Ê) ∧ δ ⊢ E : Σ =⇒ E ∈ γξE,Σ(Ê)

Proof B.2 By construction - ξE,Σ contains all pointers that are live, and typed
in E, but no else. Thus, it removes all demands on things that are not live or
typed, while allowing for the same concretization of all live and typed locations.

Lemma B.3 (Σ-reachable locations are well-formed)

δ ⊢ E : Σ ∧ E(l) = v ∧ Σ(l) = τ =⇒ δ ⊢ v : τ

Proof B.3 By straightforward induction on the symbolic location.

Lemma B.4 (Σ-reachable pointers are well-formed)

δ ⊢ E : Σ ∧ p ∈ γξE,Σ =⇒ ∃A . δ(p) = A

Proof B.4 The result is immediate, since ξE,Σ forms a subset of the Σ-reachable
pointers.

By definition if p ∈ γξE,Σ there exists a symbolic location l such that E(l) = p
and Σ(l) = τ . From Lemma B.3 we have that δ ⊢ p : τ , which gives us τ = A1,
and δ(p) = A2 <: A1.

Lemma B.5

Ωmax ⊢ Ê : Σ ∧ δ ⊢ E : Σ ∧ E ∈ γξE,Σ(Ê) =⇒

p ∈ ξE,Σ(p̂) ∧ p̂ ∈ dom(Ωmax)∧ =⇒ δ(p) <: Ωmax(p̂)

Proof B.5 First we state some properties needed.

1. Ωmax ⊢ Ê : Σ gives us that all symbolic locations l such that Σ(l) is defined

we either that Ê(l) = p̂+, Ê(l) = p̂−, or that Ê(l) = •.

2. Let Lbp+ be the set of symbolic locations such that for l ∈ Lbp+, Σ(l) is

defined and Ê(l) = p̂. Since E ∈ γξ(Ê) we have for each p ∈ ξ(p̂+) that
the set Lbp such that l ∈ Lp, Σ(l) is defined and E(l) = p is a subset of
Lbp+ .

3. Let Lbp− be the set of symbolic locations such that for l ∈ Lbp− , Σ(l) is

defined and Ê(l) = p̂. Since E ∈ γξ(Ê) we have for the unique p ∈ ξ(p̂−)
that the set Lp such that l ∈ Lp, Σ(l) is defined and E(l) = p is a equal
to the set Lbp− .

4. From, Ωmax ⊢ Ê : Σ we have that for all l ∈ Lbp+ it holds that Ωmax(p̂) <:
Σ(l) and Σ(l) <: Ωmax(p̂), i.e., all may-aliased locations have exactly the

same type view (up to renaming). Together with E ∈ γξ(Ê) this gives us
that all occurrences of concrete pointers p ∈ ξ(p̂) have the same type view.
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5. From, Ωmax ⊢ Ê : Σ we have that for all l ∈ Lbp− it holds that Ωmax(p̂) <:
Σ(l), i.e., all must-aliased locations have compatible type views Together

with E ∈ γξ(Ê) this gives us that all occurrences of concrete pointers
p ∈ ξ(p̂) have compatible type views.

First, using δ ⊢ E : Σ and p ∈ ξE,Σ(p̂), Lemma B.4 gives us δ(p) = A for
some A, i.e., δ(p) is defined. The proof has two cases.

May-alias case Assume p ∈ ξ(p̂+), and p̂+ ∈ dom(Ωmax); from above we have
that all l ∈ Lbp+ ⊇ Lp have exactly the same type view. Thus, δ(p) <:
Σ(l) = Ωmax(p̂+).

Must-alias case Assume p ∈ ξ(p̂−), and p̂− ∈ dom(Ωmax); from above we
have that l ∈ Lbp+ = Lp. Furthermore, since Ωmax is maximal we know
that Ωmax(p̂−) =

d
l∈L

bp+
Σ(l). Thus, since for all l ∈ Lp it holds δ(p) <:

Σ(l) we have that δ(p) <: Ωmax(p̂−) <: Σ(l).

Lemma B.6 (Stability of Value Type Decoration)

Ωmax ⊢ v̂ : τ1 y v̂d ∧ δ ⊢ v : τ2 ∧ τ2 <: τ1 ∧ v ∈ γξ(v̂) =⇒ v ∈ γξ(v̂d)

Proof B.6 Assume (1) Ωmax ⊢ v̂ : τ1 y v̂d, (2) δ ⊢ v : τ2, (3) τ2 <: τ1 and
(4) v ∈ γξ(v̂).

The proof continues by a case analysis of (1).

case Ωmax ⊢ • : τ1 y •τ1
We must show that v ∈ γξ(v̂d) = [[τ1]] for the cases

where τ1 is one of int, nat or bool. This follows directly from (2) and (3).

case Ωmax ⊢ p̂ : A y p̂ Since the decoration does not affect the concretization
of pointers the result follows directly from (4).

Lemma B.7 (Stability of Store Type Decoration)

Ωmax ⊢ ŝ : Σ y ŝd ∧ δ ⊢ s : Σ ∧ s ∈ γξ(ŝ) =⇒ s ∈ γξ(ŝd)

Proof B.7 Assume (1) Ωmax ⊢ ŝ : Σ y ŝd, (2) δ ⊢ s : Σ, and (3) s ∈ γξ(ŝ).
We must show that ∀x ∈ dom(ŝd). s(x) ∈ γξ(ŝd(x)). We have that (4) ∀x ∈

dom(ŝ). s(x) ∈ γξ(ŝ(x)) from (3), and (2) gives us that (5) ∀x ∈ dom(Σ). δ ⊢
s(x) : Σ(x). Now, (1) gives us that (6) ∀(x, τ) ∈ Σ. Ωmax ⊢ ŝ(x) : τ y ŝd(x),
(7) dom(ŝ) = dom(ŝd), and (8) ∀x ∈ dom(ŝ) \ dom(Σ). ŝd(x) = ŝ(x).

Thus, assuming x ∈ dom(ŝd), we either have x ∈ dom(ŝ) \ dom(Σ) in which
case we are done by (8) or x ∈ dom(Σ) and x ∈ dom(ŝ) by (7). Now, (6) gives
Ωmax ⊢ ŝ(x) : Σ(x) y ŝd(x), (5) gives δ ⊢ s(x) : Σ(x), (4) gives s(x) ∈ γξ(ŝ(x)),
and we reach the conclusion via Lemma B.6.

Lemma B.8 (Stability of Record Type Decoration)

Ωmax ⊢ r̂ : ω1 y r̂d ∧ δ ⊢ r : ω2 ∧ ω2 <: ω1 ∧ r ∈ γξ(r̂) =⇒ r ∈ γξ(r̂d)
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Proof B.8 Assume (1) Ωmax ⊢ r̂ : ω1 y r̂d, (2) δ ⊢ r : ω2, (3) ω2 <: ω1, and
(4) r ∈ γξ(r̂).

To show r ∈ γξ(r̂d) we need to show that ∀f ∈ dom(r̂d). r.f ∈ γξ(r̂d.f).

(1) gives (5) ∀(f, τ) ∈ ω1. Ωmax ⊢ r̂.f : τ y r̂d.f , (6) dom(r̂) = dom(r̂d),
and (7) ∀f ∈ dom(r̂) \ dom(ω). r̂d(f) = r̂(f). (2) gives (8) ∀(f, τ) ∈ ω2. δ ⊢
r.f : τ . (3) gives (9) ∀(f, τ) ∈ ω1. ω2.f = τ .

Assume f ∈ dom(r̂d). (6) gives that we have either f ∈ dom(r̂)\dom(ω1) and
we are done by (7), or f ∈ r̂, and f ∈ ω1 such that Ωmax ⊢ r̂.f. : ω1.f. y r̂d.f .
Now, (9) gives us that ω2.f = ω1.f , and (8) gives δ ⊢ r.f : ω2.f . With this
Lemma B.6 allows us to conclude.

Lemma B.9 Stability of Heap Type Decoration

Ωmax ⊢ (s, ĥ) : Σ y (ŝd, ĥd) ∧ δ ⊢ (s, h) ∧ h ∈ γξE,Σ(ĥ) =⇒ h ∈ γξE,Σ(ĥd)

Proof B.9 Assume (1) Ωmax ⊢ ĥ y ĥd, (2) δ ⊢ h, and (3) h ∈ γξE,Σ(ĥ). (1)

gives (4) ∀(p̂,A) ∈ Ωmax. Ωmax ⊢ ĥ(p̂) : ∆(A) y ĥd(p̂), (5) dom(ĥ) = dom(ĥd),

and (6) ∀p̂ ∈ dom(ĥ) \ dom(Ω)max. ĥd(p̂) = ĥ(p̂). (2) gives ∀(p,A) ∈ δ. δ ⊢

h(p) : ∆(A), and (3) gives ∀p̂ ∈ dom(ĥ), p ∈ ξE,Σ(p̂). h(p) ∈ γξE,Σ(ĥ(p̂)).

We must show that ∀p̂ ∈ dom(ĥd), p ∈ ξE,Σ(p̂). h(p) ∈ γξE,Σ(ĥd(p̂)). Assume

p̂ ∈ dom(ĥd) and p ∈ ξE,Σ(p̂). (5) gives either p̂ ∈ dom(ĥ) \ dom(Ωmax) and we

are done by (6) or (p̂,A1) ∈ Ωmax and thus that Ωmax ⊢ ĥ(p̂) : ∆(A1) y ĥd(p̂)
by (4). From Lemma B.5 we have that δ(p) <: A1, which implies that δ is
defined for p, i.e., δ(p) = A2 for some A2. Now, (2) gives us δ ⊢ h(p) : ∆(A2),
and we are done by Lemma B.8.

Lemma B.10 (Stability of Type Decoration)

Ωmax ⊢: Ê : Σ y Êd ∧ δ ⊢: E : Σ ∧E ∈ γ(Ê) =⇒ E ∈ γ(Êd)

Proof B.10 First, E ∈ γ(Ê) implies the existence of ξ such that E ∈ γξ(Ê).

Now, Lemma B.2 gives us that E ∈ γξE,Σ(Ê). The result is immediate from
Lemma B.7, and Lemma B.9.

Lemma B.11 Type Decoration Preserves Well-formedness

Ω ⊢ Ê1 : Σ y Ê2 =⇒ Ω ⊢ Ê2 : Σ

Proof B.11 The result is immediate from inspecting the rules and noting that
the only decoration takes place in the well-formedness rule for • and that the
decoration is the type demanded by well-formedness, i.e., Ω ⊢ • : int : •int .
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C Preservation of Well-formedness under Con-

cretization

This section contains the proofs that well-formedness is preserved by concretiza-
tion of the structural may-aliases of Section 6, and the combined structural may-
and must-aliases of Section 7. In this section all pointer valuations are may-
and must-alias sound, why the ∗ superscript is dropped from ξ∗ throughout.

Lemma C.1 Preservation of Well-formedness under Concretization

Ω ⊢ Ê : Σ ∧ E ∈ γξ(Ê) =⇒ δΩ,ξ ⊢ E : Σ

Proof C.1 Given that E = (s, h) we must show that δΩ,ξ ⊢ s : Σ, and that
δΩ,ξ ⊢ h. The result is immediate from Lemma C.3, and Lemma C.5 below.

Lemma C.2 Preservation of Well-formedness under Value Concretization

Ω ⊢ v̂ : τ ∧ v ∈ γξ(v̂) =⇒ δΩ,ξ ⊢ v : τ

Proof C.2 We proceed by a case analysis on v̂.

case v̂ = •τ1
We have that v ∈ [[τ1]] from v ∈ γξ(v̂), and that τ1 <: τ from

Ω ⊢ v̂ : τ , and the result is immediate.

case v̂ = p̂+ We have that v = p ∈ ξ(p̂+) from v ∈ γξ(p̂
+), and that Ω(p̂+) =

τ = A for some A. By definition δΩ,ξ(p) = Ω(p̂+) given p ∈ γξ(p̂
+), and

the result is immediate.

case v̂ = p̂− We have that v = p ∈ ξ(p̂−) from v ∈ γξ(p̂
−), and that Ω(p̂−) <:

τ = A for some A. By definition δΩ,ξ(p) = Ω(p̂−) given p ∈ γξ(p̂
−), and

the result is immediate.

Lemma C.3 (Preservation of Well-formedness under Store Concretization)

Ω ⊢ ŝ : Σ ∧ s ∈ γξ(ŝ) =⇒ δΩ,ξ ⊢ ws : Σ

Proof C.3 We must show that (x, τ) ∈ Σ. δΩ,ξ ⊢ s(x) : τ . Assume (x, τ) ∈ Σ.
We have that Ω ⊢ ŝ(x) : τ from Ω ⊢ ŝ : Σ, and s(x) ∈ γξ(ŝ(x)) from s ∈ γξ(ŝ).
The result is immediate from Lemma C.2.

Lemma C.4 (Preservation of Well-formedness under Record Concretization)

Ω ⊢ r̂ : ω ∧ r ∈ γξ(r̂) =⇒ δΩ,ξ ⊢ r : ω

Proof C.4 We must show that (f, τ) ∈ ω. δΩ,ξ ⊢ r.f : τ . Assume (f, τ) ∈ ω.
We have that Ω ⊢ r̂.f : τ from Ω ⊢ r̂ : ω, and r.f ∈ γξ(r̂.f) from r ∈ γξ(r̂). The
result is immediate from Lemma C.2.
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Lemma C.5 (Preservation of Well-formedness under Heap Concretization)

Ω ⊢ ĥ ∧ h ∈ γξ(ĥ) =⇒ δΩ,ξ ⊢ h

Proof C.5 We must show that (p,A) ∈ δΩ,ξ. δΩ,ξ ⊢ h(p) : ∆(A). Assume
(p,A) ∈ δΩ,ξ. By definition of δΩ,ξ we have that there exists an abstract struc-
tural pointer (must or may) p̂ such that p ∈ ξ(p̂), and Ω(p̂) = A. We have

that Ω ⊢ ĥ(p̂) : ∆(A) from Ω ⊢ ĥ, and from the fact that ξ has pairwise dis-

joint codomain we have that p̂ is unique, which together h ∈ γξ(ĥ), gives us

h(p) ∈ γξ(ĥ(p̂)) and the result is immediate from Lemma C.4.


