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Abstract

We present a general way of making use of may- and must-alias infor-

mation to achieve flow-sensitive type systems that allow for flow-sensitivity

on the heap. In particular, we show how may-alias information can be

used for a limited form of flow-sensitivity — structural weakening — that

allows type changes on the heap that are compatible with the subtype

hierarchy. Further, we show how the combination of may- and must-alias

information can be used to achieve strong updates, i.e., type changes on

the heap that are not compatible with the subtype hierarchy, resembling

the typical type rule for updates of variables in flow sensitive type sys-

tems. This work has been enabled by the use of our plugin framework —

a framework for parameterizing type systems over the results of abstract

interpretations — that allows us to abstract away from the computation

of the alias information. In addition, our successful use of the plugin

mechanism to extract both may- and must-alias information shows its

strength.

1 Introduction

One dimension of program analyses is flow-sensitivity; the result of a flow-
sensitive analysis depends on the order of the instructions of a program, whereas
the result of a flow-insensitive analysis does not. Frequently, flow-sensitive anal-
yses achieve higher precision than flow-insensitive.

Even though type systems are predominantly flow-insensitive, flow-sensitive
type systems arise naturally, as shown by, for example, linear and affine type
systems [Pie05]. A more well-known example of a flow-sensitive type system is
the type system of Java bytecode where the limited number or registers forces
(from a practical standpoint) the type system to be able to change the types of
registers; each instruction is typed in a pre- and a post-type, and the assignment
instruction changes the type of the target register in the post type to the type
of the source value.

The static flow-sensitivity of Java bytecode is limited to registers for a reason;
aliasing prohibits the flow-sensitivity to easily extend to the heap. To be able to
change types on the heap, e.g., the type of a field of a certain object, it must be
made sure that the types of all aliased locations are changed, otherwise a way of
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freely casting between the types by writing into one location and reading from
another is introduced. Thus, for instance, it is not safe to extend the subtyping
relation to arrays, i.e., to say that String[] is a subtype of Object[] because
String is a subtype of Object, since that would allow casting from the type
Object to the type String1.

The standard solution for this is to enforce invariant typing for all heap loca-
tions, involving both prohibiting type changes based on updates, and restraining
the subtype relation to invariant subtyping for arrays, and width subtyping for
objects [Pie02].

From a practicality standpoint, width subtyping is good enough for ”stan-
dard” types. For information flow security it is not necessarily the case. Whereas
the need to freely change the types of parts of the heap may seem far fetched,
i.e., from a boolean to an integer, the need to change a location from hold-
ing public integers to holding secret integers is not as unreasonable, especially
considering that, unlike standard types, information flow types are intrinsically
flow sensitive. In addition to this, there are important extensions to basic
information-flow security that rely on flow-sensitivity [HS08].

Contribution We present a general method for making use of may- and must-
alias information to allow for flow-sensitive types on the heap. Whereas previous
work has tried to combine the computation of the alias information and its usage,
we use our recently proposed abstract-interpretation plugin framework [GH08]
to decouple the computation and the usage of the alias information. This allows
us to use the alias information in a general and clear way, while at the same time
allowing us to instantiate the resulting type system with different alias analyses
— from the most basic ones to, e.g., the most elaborate shape analyses.

The main contributions of this paper are that we 1) show how the plugin
framework can be used to carry over structural information about the heap,
2) show how may-alias information can be used to formulate a structural sub-
typing rule, and 3) show how may- and must-alias information can be used in
combination to allow for strong updates on the heap, i.e., updates that do not
follow the subtype hierarchy.

Outline The paper is laid out as follows. Section 2 introduces the language,
Section 3 recapitulates the needed parts of the method of parameterization, and
Section 4 introduces the basic type system and the correctness statements —
in particular preservation of types. Section 5 discusses the basic idea of flow-
sensitive heap types, defines the used representation of may- and must-alias
information — structural environments — and their semantics, and shows how
structural heaps can be extracted from the parameterized alias information.
Section 6 contains the first use of may-alias information to achieve a limited
form of flow-sensitive heap types. The basic idea is to use the may-aliases
to form a structural subtyping rule, where all symbolic locations that may be
aliased are guaranteed to have the same type view, which guarantees that all

1Java does allow this, which forces a runtime check when storing objects into arrays.
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concrete environments will be width well-formed. Section 7 shows how may-
and must-alias information can be combined to support strong updates if the
updated location is in an isolated cluster of must-pointers. Finally, Section 8
discusses related work, and Section 9 concludes.

2 Language

The language used to illustrate our method is a small imperative language with
records.

Syntax Let f range over field names, b range over booleans, i range over
integers, and x range over variable names. The syntax of the language is defined
as follows, where A ranges over record type names.

Expressions e ::= nil | b | i | x | e1 ⋆ e2 | x.f
Commands c ::= x := e | x1.f := x2 | if e c1 c2 | c1; c2 |

while e c | x := new(A) | skip

Values The environments are pairs of stores s and heaps h. The stores are
maps from variables x to values v, and the heaps are maps from pointers p to
records r. The records are maps from field names to values. Finally, the values
are made up by booleans, integers and pointers; the error lifted values, ranged
over by v⊥, are either values or ⊥ indicating an error. We impose the restriction
that heaps may not associate the null-pointer to anything, i.e., the null-pointer
must not be in the domain of any heap.

v ::= b | i | p
E ::= (s, h)

r ::= {f1 7→ v1, . . . , fn 7→ vn}
s ::= {x1 7→ v1, . . . , xn 7→ vn}
h ::= {p1 7→ r1, . . . , pn 7→ rn}

Let r.f denote r(f), and for E = (s, h), let E(x) denote s(x), E[x 7→ v] denote
(s[x 7→ v], h), E(p) denote h(p), and similarly for other operations on environ-
ments including variables or pointers.

Semantics We assume a simple reduction semantics for expressions of the
form 〈E, e〉 ⇓ v⊥.

The semantics of commands is given in terms of a small step semantics
between configurations with transitions of the form 〈E, c〉 → C, where C is either
one of the terminal configurations ⊥E and E indicating abnormal and normal
termination in the environment E, respectively, or a non-terminal configuration
〈E, c〉. Figure 1 contains the semantic rules for commands, where rec(A) creates
a fresh record of type A with all fields set to 0 or nil, depending on their type —
we assume the existence of a map ∆ from record type names to structural record
types (defined in Section 4 below). The origin of this map is not significant for
this work, and, thus, left unspecified, but is typically created from the program
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〈E, x := v〉 → 〈E[x 7→ v], skip〉

s(x1) = nil

〈(s, h), x1.f := x2〉 → ⊥(s,h)

s(x1) = p h(p) = r s(x2) = v

〈(s, h), x1.f := x2〉 → 〈(s, h[p 7→ r[f 7→ v]]), skip〉

〈E, if true c1 c2〉 → 〈E, c1〉 〈E, if false c1 c2〉 → 〈E, c2〉

〈E,while e c〉 → 〈E, if e (c;while e c) skip〉

r = rec(A) p 6∈ dom(h)

〈(s, h), x := new(A)〉 → 〈(s[x 7→ p], h[p 7→ r]), skip〉

〈E, skip; c〉 → 〈E, c〉

Figure 1: Semantic rules for commands

source, possibly in combination with a system specific map. The record name
map is invariant under the execution of the program, and is left implicit in the
rest of this paper.

Following [GH08] we extend the command language with label annotations
to track how environments flow in and out of commands during execution and
add the following rules for reduction of labeled commands. Let l range over
labels drawn from the set of labels L. A command c can be annotated with
an entry label (c)l , an exit label (c)l , or both (c)l1

l2
. In the following, c ranges

over possibly annotated commands, i.e., (c)l denotes a command with at least
an entry label l , and similarly for exit labels. For while-loops decorated with
an entry label we add the following reduction rule.

〈E, (while e c)l〉 → 〈E, (if e (c; (while e c)l ) skip)l 〉

For commands decorated with entry labels that are not while-loops, and for skip
decorated with an exit label we add the following reduction rules.

〈E1, c1〉 → 〈E2, c2〉

〈E1, (c1)
l 〉 → 〈E2, c2〉 〈E, (skip)l〉 → 〈E, skip〉

As is common for small step semantics we use evaluation contexts R to
determine the position of the next computation step.

R ::= · | x := R | if R c c | R; c | (R)l

The accompanying standard reduction rules, found in Figure 2, allow for left-
most reduction of sequences, error propagation, reduction of expressions inside
commands and reduction of commands under exit labels.



Plugins for Structural Weakening and Strong Updates 5

〈E, e〉 ⇓ v

〈E, R[e]〉 → 〈E, R[v]〉

〈E, e〉 ⇓ ⊥

〈E, R[e]〉 → ⊥E

〈E1, c1〉 → 〈E2, c2〉

〈E1, R[c1]〉 → 〈E2, R[c2]〉

〈E, c〉 → ⊥E

〈E, R[c]〉 → ⊥E

Figure 2: Semantic Rules for Contexts

3 Parameterization

Before presenting the type system we recapture the fundamental parts of the
method of parameterization. For a more thorough exposition see [GH08].

Abstract Environment Maps Let E range over some form of abstract en-
vironments with an associated concretization function γ, mapping abstract en-
vironments to sets of concrete environments. An abstract environment map is
a map from labels to abstract environments. We say that an abstract envi-
ronment map M is an entry/exit solution with respect to a command c1 and
a concrete environment E1 if it represents all environments flowing into/out of
each command as follows where is is the predicate for entry solutions and os
the predicate for exit solutions.

isE1

c1
(M) ≡ ∀E2 , c2 . 〈E1 , c1 〉 →∗ 〈E2 ,R[(c2 )l ]〉 =⇒

E2 ∈ γ(M(l))

osE1

c1
(M) ≡ ∀E2 . 〈E1 , c1 〉 →

∗ 〈E2 ,R[(skip)l ]〉 =⇒
E2 ∈ γ(M(l))

The definition is lifted to sets of initial environments C in the obvious way.

Plugins Properties and Plugins A plugin property R⋄ is a family of ex-
pression liftings of a relation R on values, defined in the following way.

(e1, . . . , en) ∈ R⋄
E ≡ 〈E, e1〉 ⇓ v1 ∧ · · · ∧ 〈E, en〉 ⇓ vn =⇒ (v1, . . . , vn) ∈ R

Plugin properties define the meaning of the plugins, in the sense that the plugins
are approximations of the plugin properties.

A plugin is a family of relations on expressions indexed by abstract envi-
ronments. R♯ is said to be a plugin for R⋄ given that the following property
holds.

(e1, . . . , en) ∈ R♯
E

=⇒ ∀E ∈ γ(E). (e1, . . . , en) ∈ R⋄
E

The plugin framework cannot be used to directly transfer alias information.
In Section 5 we show algorithmically how equality and inequality information
about pointers can be used to build may- and must-alias views of the heap,
respectively. Thus, in this paper we will be using two plugins: one for may-alias
extraction corresponding to lifted pointer inequality, and one for must-alias
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extraction corresponding to lifted pointer equality (excluding the null-pointer).
Let R6= denote plugins for pointer inequality, and let R− denote plugins for
pointer equality. For convenience, let R+ denote the negation of the pointer
inequality plugin — two pointers that cannot be shown to be unequal must be
assumed to be aliased.

4 Type System

The type system introduced in this section is used as the base for two differ-
ent extensions: structural weakening and strong updates which we investigate
separately in Section 6 and Section 7 respectively.

Type Language The primitive types, ranged over by τ , are the type of
booleans bool, the type of natural numbers nat, the type of integers int , and
the pointer types, represented by record type names A. The record types ω
are maps from fields to primitive types. As mentioned above, ∆ is a map from
record type names to record types. The store types, ranged over by Σ, are maps
from variables to primitive types. The exception types, ranged over by ξ, are
⊥Σ, indicating the possibility that an exception is thrown in the environment
type Σ, and ⊤ indicating that no exception is thrown. This is a simplification
from typical models of exceptions, where multiple types are used to indicate the
reason for the exception. However, for our purposes this model suffices — the
results are easily extended to a richer model.

τ ::= bool | nat | int | A
ξ ::= ⊥Σ | ⊤

ω ::= {f1 7→ τ1, . . . , fn 7→ τn}
Σ ::= {x1 7→ τ1, . . . , xn 7→ τn}
∆ ::= {A1 7→ ω1, . . . ,An 7→ ωn}

Subtyping We define two standard subtype relations: width subtyping <:w
and width-depth subtyping <:d. For brevity, we will use the term depth subtyp-
ing to refer to width-depth subtyping in the rest of this paper. Most of this
paper is only concerned with width subtyping; thus, when not explicitly marked
otherwise, <: refers to width subtyping.

Width subtyping provides a uniform type view of the heap, see, for instance,
invariant subtyping for ML references [Pie02], which is needed to support updates
in the presence of aliases2; see below for a more thorough explanation.

Common to both width subtyping and depth subtyping are the rules for
primitive types, exception types, and store types.

τ <:w/d τ nat <:w/d int

ξ <:w/d ξ ⊤ <:w/d ⊥Σ

Σ1 <:w/d Σ2

⊥Σ1
<:w/d ⊥Σ2

∀x ∈ dom(Σ2). Σ1(x) <:w/d Σ2(x)

Σ1 <:w/d Σ2

2In the absence of additional analyses.
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The difference between the relations is captured by the rules for subtyping
of record types. Width subtyping allows records to be seen as smaller records
while retaining the types of the remaining fields, i.e., bigger record types are
subtypes of smaller given that all fields in the domain of the smaller record type
are mapped to the same types in both the smaller and the bigger, while depth
subtyping demands that all fields in the domain of the smaller are mapped to
types that are depth subtypes of the corresponding types in the smaller record
type.

∀f ∈ dom(ω2). ω1.f = ω2.f
ω1 <:w ω2

∀f ∈ dom(ω2). ω1.f <:d ω2.f
ω1 <:d ω2

The subtyping relations naturally induce a subtype relation on record type
names. Thus, even though the system introduced so far is nominal, we use
structural subtyping, defined on record identifiers as the smallest relation on
record names <:w/d satisfying:

∆(A1) <:w/d ∆(A2)

A1 <:w/d A2

This is in contrast to the more frequent use of pure nominal subtyping, where
the programs explicitly declare what record names are subtypes of each other.

Width versus Depth Subtyping The subtyping relation defines when ob-
jects of one type can be safely seen as having another type. For instance, it is
perfectly safe to view a natural number as an integer, since the set of integers
include all natural numbers. It may seem natural to extend the subtyping rela-
tion to records based on the same subset argument; after all, the set of records
with a field f holding a natural numbers is included in the set of records with
the same field f holding an integer.

Such an extension of the subtyping relation to records is provided by depth-
subtyping and is, in fact, perfectly sound in the presence of aliases as long as
we only read from the records. However, in the presence of aliases and updates,
depth subtyping is not sound, as illustrated by the following program where
∆(A) = {f : nat} and ∆(B) = {f : int}.

A x := new A; B y := (B) x; y.f := -1; nat z := x.f;

In this example and the following examples we will use A, B, C, . . . as record
type names, and x, y, z, . . . as variable names. In addition, for clarity, we will
allow type annotations, type casts, and field assignment of constants — neither
is necessary, but allows the examples to be more concise. For example, in the
above program the cast in the assignment y := (B) x is needed to change the
type of x to B before the assignment. Otherwise, the type of y would simply be
overwritten by the type of x, i.e., A, since variable updates are flow-sensitive.

The example first creates a record with a field f of type natural numbers.
Using depth subtyping we create an alias to the record with an integer field
type. As noted above, reading the field via x and y is still sound - x has a more
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Σ ⊢ e : τ, ξ

Σ ⊢† x := e ⇒ Σ[x 7→ τ ], ξ

Σ(x1) = A Σ(x2) = τ
τ <: ∆(A).f

Σ ⊢† x1.f := x2 ⇒ Σ,⊥Σ

Σ1 ⊢ e : bool, ξ Σ1 ⊢† c1 ⇒ Σ2, ξ Σ1 ⊢† c2 ⇒ Σ2, ξ

Σ1 ⊢† if e c1 c2 ⇒ Σ2, ξ

Σ ⊢ e : bool, ξ Σ ⊢† c ⇒ Σ, ξ

Σ ⊢† while e c ⇒ Σ, ξ

Σ1 ⊢† c1 ⇒ Σ2, ξ Σ2 ⊢† c2 ⇒ Σ3, ξ

Σ1 ⊢† c1; c2 ⇒ Σ3, ξ

Σ ⊢† x := new(A) ⇒ Σ[x 7→ A],⊤

Σ ⊢† skip ⇒ Σ,⊤

Σ2 ⊢† c ⇒ Σ3, ξ1

Σ1 <: Σ2 Σ3 <: Σ4 ξ1 <: ξ2

Σ1 ⊢† c ⇒ Σ4, ξ2

Figure 3: Type Rules for Commands

precise type, viewing the field as a natural number while y views it as an integer.
However, the types permit us to update the field with an integer via y, and to
read the written integer as a natural number via x, effectively introducing a cast
going the opposite direction of the subtype hierarchy. Thus, a weakening rule
as the one found in Figure 3 but based on depth subtyping rather than width
subtyping is unsound.

It should be pointed out that writing is sound using a depth subtyping
rule with the subtype of the fields inverted, i.e., we can view a record with an
integer field as a record with a natural number field — all natural numbers
are also integers and limiting the values that can be written into the field is
unproblematic. For this reason reading is known as being co-variant, i.e., that
sound subtyping with respect to reading extends structurally in the same way,
and writing is known as being contra-variant, i.e., that sound subtyping with
respect to writing extends structurally in the opposite way [Pie02]. In a system
where the same type governs both reading and writing, the types of the fields
must be both co-variant and contra-variant, i.e., they must be invariant. This
is represented by the width subtyping that demands equality on the types of the
fields, which implies invariance, since the subtyping relation is reflexive.

Expression Type Rules The typing judgment for expressions, Σ ⊢ e : τ, ξ,
is read as the expression e is well-typed in the environment type Σ, with return
type τ possibly resulting in exceptions as indicated by ξ. The type rules for the
expressions are entirely standard, and omitted for brevity.
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δ ⊢ b : bool δ ⊢ i : int

i ≥ 0

δ ⊢ i : nat

δ ⊢ nil : A

δ(p) <: A

δ ⊢ p : A

∀(f, τ) ∈ ω. δ ⊢ r.f : τ

δ ⊢ r : ω

∀(x, τ) ∈ Σ. δ ⊢ s(x) : τ

δ ⊢ s : Σ

∀(p,A) ∈ δ. δ ⊢ h(p) : ∆(A)

δ ⊢ h
δ ⊢ s : Σ δ ⊢ h

δ ⊢ (s, h) : Σ

δ ⊢ v : τ
δ ⊢ v : τ, ξ δ ⊢ ⊥ : τ,⊥Σ

δ ⊢ E : Σ2

δ ⊢† ⊥E : Σ1,⊥Σ2

Σ1 ⊢† c ⇒ Σ2, ξ δ ⊢ E : Σ1

δ ⊢† 〈E, c〉 : Σ2, ξ

Figure 4: Well-formedness

Command Type Rules The type system for commands is flow sensitive;
each command is typed with respect to a pre and a post environment type.
The typing judgment for commands, Σ1 ⊢MI ,MO,R+,R−

c ⇒ Σ2, ξ is read as the
command c is well-typed with respect to the abstract environment maps MI ,
and MO, the plugin R+, and the plugin R− in the environment type Σ1 resulting
in the environment type Σ2, possibly resulting in an exception as indicated by
ξ. The standard type rules for commands are shown in Figure 3, where ⊢†

is used as short form for ⊢MI ,MO,R+,R−

. The standard type system serves as
the foundation for the extension with rules for structural weakening and strong
updates.

4.1 Correctness

As is done by Pierce [Pie02] we split the correctness argument into two the-
orems, progress — intuitively, that well-typed commands and expressions are
able to execute in all environments that conform to, i.e., are well-formed with
respect to, the entry environment type of the command or expression — and
preservation — intuitively, that the result of running the command or expres-
sion conforms to the exit environment type of the same. Together, progress
and preservation guarantee proper execution of well-typed programs in all well-
formed environments; progress and preservation repeatedly guarantee one step
of execution, and that the result is well-formed.

Well-formedness We define two well-formedness relations, one correspond-
ing to width subtypes, and one corresponding to depth subtypes. More precisely,
well-formedness is formulated as a family of relations between values and types,
indexed over pointer typings. The pointer typings, ranged over by δ, are maps
from pointers to record type names and make the well-formedness relation induc-
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tively definable also for cyclic heaps. The rules for well-formedness are found in
Figure 4, where ⊢† is used as short form for ⊢MI ,MO,R+,R−

. The well-formedness
relations are entirely standard; the interaction between the well-formedness rela-
tion for stores and heaps, together with the well-formedness relation for records
guarantees that if an environment is well-formed with respect to a store type
and a pointer typing, then the pointer typing types at least all live (reachable)
pointers.

Progress and Preservation of Expressions Preservation of expressions
expresses that well-typed expressions preserve well-formedness under execution,
i.e., for an expression e such that Σ ⊢ e : τ, ξ, running e in Σ-well-formed
environments will result in τ, ξ-well-formed values.

Theorem 4.1 Preservation of Types of Expressions

Σ ⊢ e : τ, ξ =⇒ δ ⊢ E : Σ ∧ 〈E, e〉 ⇓ v⊥ =⇒ δ ⊢ v⊥ : τ, ξ

Proof 4.1 By induction over the derivation of Σ ⊢ e : τ, ξ. The proof is entirely
standard and is omitted for brevity.

Progress of expressions expresses that well-typed expressions are able to
execute in correspondingly well-formed environments, i.e., for an expression e
such that Σ ⊢ e : τ, ξ it is possible to run e in any Σ-well-formed environment.

Theorem 4.2 Progress of Expressions

Σ ⊢ e : τ, ξ =⇒ δ ⊢ E : Σ =⇒ ∃v⊥.〈E, e〉 ⇓ v⊥

Proof 4.2 By induction over the derivation of Σ ⊢ e : τ, ξ. The proof is entirely
standard and is omitted for brevity.

Together progress and preservation for expressions guarantee that well-typed
expressions are able to run in correspondingly well-formed environments, and
that the results are well-formed.

Progress and Preservation of Commands Preservation of types of com-
mands is formulated in essentially the same way as for expressions, i.e., for
a command c such that Σ1 ⊢† c ⇒ Σ2, ξ, running c in any Σ1-well-formed
environment that is in any set of initial environments C which makes MI an
entry solution and MO an exit solution for c will result in a Σ2, ξ-well-formed
configuration.

Theorem 4.3 Preservation of Types of Commands

Σ1 ⊢MI ,MO,R+,R−

c ⇒ Σ2, ξ ∧ isCc (MI ) ∧ osCc (MO ) =⇒

E ∈ C ∧ δ1 ⊢ E : Σ1 ∧ 〈E, c〉 → C =⇒ ∃δ2. δ2 ⊢† C : Σ2, ξ



Plugins for Structural Weakening and Strong Updates 11

Proof 4.3 By induction on the derivation of Σ1 ⊢MI ,MO,R+,R−

c ⇒ Σ2, ξ. The
proof is entirely standard since the standard type rules do not make use of the
parameterized information and is omitted for brevity.

Progress of commands expresses that well-typed commands are able to run
in correspondingly well-formed environments, i.e., for a command c such that
Σ1 ⊢† c ⇒ Σ2, ξ, it is possible to run c in any Σ1-well-formed environment.

Theorem 4.4 Progress of Commands

Σ1 ⊢MI ,MO,R+,R−

c ⇒ Σ2, ξ ∧ isCc (MI ) ∧ osCc (MO ) =⇒

E ∈ C ∧ δ ⊢ E : Σ1 =⇒ ∃C. 〈E, c〉 → C

Proof 4.4 By induction on the derivation of Σ1 ⊢MI ,MO,R+,R−

c ⇒ Σ2, ξ. The
proof is entirely standard since the standard type rules do not make use of the
parameterized information and is omitted for brevity.

As above progress and preservation interact to guarantee successful execu-
tion of well-typed commands in well-formed environments. Let 〈E, c〉 →n C be
the obvious lifting of the small step evaluation to evaluation of n consecutive
steps. We formulate the top-level correctness of commands, that well-typed
commands terminate in well-formed environments or result in well-formed con-
figurations regardless of the number of execution steps, in the following way,
where T ranges over terminal configurations.

Theorem 4.5 Top-level Correctness of Commands

Σ1 ⊢MI ,MO,R+,R−

c1 ⇒ Σ2, ξ ∧ isCc1
(MI ) ∧ osCc1

(MO ) =⇒

E1 ∈ C ∧ δ1 ⊢ E1 : Σ1 ∧ 〈E1, c1〉 →
n C =⇒

∃δ2 . δ2 ⊢MI ,MO,R+,R−

C : Σ2, ξ

Proof 4.5 The proof of top-level correctness for commands proceeds by induc-
tion over the number of execution steps. The proof is completely independent on
the parameterized information, and thus valid for all possible parameterizations
and proceed by induction over the number of execution steps. For brevity we
refer to [GH08] for the details of the proof.

5 Heap Types and Aliases

The type system presented in Section 4 allows the types of the variables to
change; after an assignment to a variable, the type of the variable becomes the
type of the expression that was assigned to the variable. This is an example of a
flow-sensitive type system. As discussed, this type scheme does not immediately
extend to records. Instead, it is common to demand type invariance for heap
locations to guarantee a uniform type view of the heap.
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Let sl range over symbolic locations, defined as follows.

sl ::= x | sl.f

The meaning of the symbolic locations with respect to a concrete environment is
defined by recursive dereference. In a given environment, each symbolic location
refers at most one concrete location, but different symbolic locations may refer
to the same concrete location. When this occurs, we say that the symbolic
locations are aliased.

This section explores the details of the interaction between aliases and sub-
typing in the presence of reading and writing, and how alias information can be
obtained using the plugin framework. The following two sections show how this
information can be used to achieve a certain degree of the freedom enjoyed by
variable types — simplified, the alias information is used to make sure that all
aliased locations agree on the type.

5.1 Flow-sensitive Heap Types

Consider the flow-sensitive type rule for variable assignment from Section 4.

Σ ⊢ e : τ, ξ

Σ ⊢† x := e ⇒ Σ[x 7→ τ ], ξ

The soundness of this rule relies on the fact that each variable is stored at a
unique place in the store, which is not shared by any other variables. Thus,
writing to a variable does not modify the value, and hence neither the type, of
any of the other variables.

A similar rule for records on the heap is not immediately possible in the
presence of aliasing. Similar to above, if such a rule is provided we have a direct
way of making a single concrete location seen as having two different types. As
shown above, such a situation is equivalent to having a way of freely casting
between the two types by writing into the concrete location via one symbolic
location, and reading from the other symbolic location, as illustrated by the
following program assuming that ∆(A) = {f : int}.

A x := new A; A y := x; y.f := true ; int z := x.f;

First, x and y are initialized to point to the same record. Thereafter, the field
of that record is updated with a boolean via y, causing the type of y to become
{f : bool}. Integers written via x can now be read as booleans via y, and vice
versa.

5.2 Alias Information

Alias information is information about which symbolic locations may be or
are guaranteed to be aliased with each other. There are two forms of aliases,
may- and must -aliases, corresponding to whether two symbolic locations may
be aliased, i.e., it cannot be ruled out that they are aliased, or must be aliased,
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i.e., they are always aliased. Intuitively, if x and y are may-aliased then it may
be the case that in one of the program runs x and y contain the same pointer.
On the other hand if x and y are must-aliased then it must be the case that
they contain the same pointer in every program run.

There are two common forms of alias information: as a map from program
points to 1) relations on symbolic locations, or 2) structural environments —
see [Deu94] for references of both methods.

In the former, if a pair of symbolic locations (sl1, sl2) are related for some
program point labeled with l then, in the may-alias case, it cannot be excluded
that sl1 and sl2 contain the same concrete pointer at l in some program run,
and, in the must-alias case, it must be the case that sl1 and sl2 contain the
same pointer at l in all program runs. To keep the alias information finite in
the presence of cycles, two important properties of (both may- and must-) alias
information are used. The first property is a form of substitutivity property

(sl1, sl2) ∧ (sl3, sl4) =⇒ (sl3[sl1/sl2], sl4[sl1/sl2]) (1)

which expresses that if sl1 and sl2 are aliased then one can form new aliases by
replacing sl1 with sl2 in other aliases. For example, if (x, y) and (x, x.f), then
we know from this rule that (y, y.f). This property subsumes transitivity, since
if (sl1, sl2) and (sl2, sl3) then (sl1, sl3). The second property

(sl1, sl2) =⇒ (sl1.f, sl2.f) (2)

expresses that anything reachable from an alias is also an alias.
For our purposes the second form of alias information — the structural

environments — is more convenient to work with. The idea behind structural
environments is to have an abstract representation that captures information
about the common structure of a set of concrete environments. This is achieved
by using abstract structural pointers with the property that (may- and must-)
aliased symbolic locations contain the same structural pointer.

Syntax of Structural Environments The syntax of the structural environ-
ments follows the syntax of the values, with pointers represented by abstract
pointers, and all other values represented by an abstract dummy.

v̂ ::= p̂ | •

Ê ::= (ŝ, ĥ)

r̂ ::= {f1 7→ v̂1, . . . , fn 7→ v̂n}
ŝ ::= {x1 7→ v̂1, . . . , xn 7→ v̂n}

ĥ ::= {p̂1 7→ r̂1, . . . p̂n 7→ r̂n}

That is, the structural values v̂ are either structural pointers, ranged over by p̂,
or any other value represented by •. A structural record r̂ is a map from field
names to structural values, a structural store ŝ is a map from variable names to
structural values, and a structural heap ĥ is a map from structural pointers to
structural records. Finally, the structural environments Ê are pairs of structural
stores and heaps.
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May-alias interpretation We define the may-alias meaning of the structural
heaps in terms of a may-alias concretization function γ+. In the following we
will drop the superscript when possible without risk of confusion. Let ξ range
over maps from structural pointers to non-empty sets of concrete pointers. To
make sure that different structural pointers get mapped to different concrete
pointers we parameterize the concretization function over a structural pointer
valuation with pairwise disjoint codomain, excluding the null-pointer. We say
that such pointer valuations are may-alias sound.

Definition 5.1 (May-alias sound pointer valuation) A pointer valuation
ξ is may-alias sound if it does not map anything to the null-pointer and has a
pairwise disjoint codomain, i.e.

∀p̂1, p̂2 ∈ dom(ξ) . p̂1 6= p̂2 =⇒ ξ(p̂1) ∩ ξ(p̂2) = ∅

Let ξ+ range over the set of may-alias sound pointer valuations.

Let V\p be the set of concrete values excluding the pointers. The concretiza-
tion for primitive values is defined as follows.

γ+
ξ+(•) = V\p γ+

ξ+(p̂) = ξ+(p̂) ∪ {nil}

The concretization function is extended structurally while allowing all pos-
sible combinations of concrete pointers as defined by the pointer valuation.
For records we let γ+

ξ+(r̂) = {r | f ∈ dom(r̂), r.f ∈ γ+
ξ+(r̂.f)}, and similarly

for stores γ+
ξ+(ŝ) = {s | x ∈ dom(ŝ), s(x) ∈ γ+

ξ+(ŝ(x))}. For heaps we let

γ+
ξ+(ĥ) = {h | p̂ ∈ dom(ĥ), p ∈ ξ+(p̂), h(p) ∈ γ+

ξ+(ĥ(p̂))}. Finally, we define

γ+
ξ+(Ê) for environments by combining the results from the concretization func-

tions for heaps and stores using the same pointer valuation.
The set of concrete environments associated with one particular structural

environment is the union over all may-alias sound pointer valuations.

γ+(Ê) =
⋃

ξ+

{γ+
ξ+(Ê)}

Must-alias interpretation The concretization function above defines the
meaning of may-aliases; with a small change in the interpretation of the struc-
tural values we can define the meaning of must-aliases. Let γ− denote the
concretization function for must-aliases. As above when there is no risk of con-
fusion the superscript is dropped. A pointer valuation is must-alias sound if all
sets in its codomain are singleton.

Definition 5.2 (Must-alias sound pointer valuation) A pointer valuation
is must-alias sound if all sets in its codomain are singleton and do not contain
the null-pointer, i.e.

∀p̂ ∈ dom(ξ) . |ξ(p̂)| = 1

Let ξ− range over must-alias sound pointer valuations.
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For structural values we define the must-alias concretization function as

γ−
ξ−

(•) = V γ−
ξ−

(p̂) = ξ−(p̂)

with the difference that, unlike V\p, V ranges over the set of all concrete values
including the pointers. The structural extension of the concretization function
to structural environments is done in exactly the same way as above.

As before, the set of concrete environments associated with one particular
structural environment is the union over all valid pointer valuations.

γ−(Ê) =
⋃

ξ−

{γ−
ξ−

(Ê)}

This means that the must-alias information only conveys information about
which pointer locations must be equal — it does not rule out any other aliases,
and considers all locations to be possibly aliased with any other location.

5.3 Plugins are Under Approximations

Sound may-alias information can be seen as an over approximation of the pos-
sibly aliased locations, i.e., it is safe to consider more locations to be aliased
than actually are.

When designing plugin properties for probing may-alias information we must
take into consideration that plugins are by definition under approximations, and
as such not suitable for probing over approximations — if two locations are not
marked as being aliases the conclusion is that they are unaliased, however a
plugin may by definition freely exclude locations from the relation, making this
conclusion invalid.

The solution to this is to use the dual interpretation of may-aliases — must-
not aliases — i.e., the under approximation of guaranteed unaliased locations.
Thus, instead of using equality on pointers as the relation for our plugin property
we use inequality.

5.4 Extracting May-Aliases

Using the may-alias plugin R+ defined above we can extract may-alias informa-
tion by a traversal rooted in the variables of pointer type.

The algorithm takes a may-alias plugin R, an abstract environment aenv, a
list of previously visited symbolic locations vs, a structural environment which
is modified during the traversal env, and a work list of symbolic locations yet
to be visited ls. Each iteration removes the topmost symbolic location of the
work list, and checks it against all previously visited symbolic locations. If
it is guaranteed to be unaliased with all previous locations a fresh structural
pointer is introduced and the symbolic location associated with it; otherwise,
the symbolic location is associated with the structural pointer of the found
previous location. Whenever a new symbolic location is introduced all relevant
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succeeding symbolic locations (the fields of pointer type) are added at the end
of the work list.

In the pseudo code below, lookup env v gets the structural pointer associ-
ated with v in the structural environment env, env[p -> *] returns an updated
version of env where p is associated with an initialization record that is type
compatible with the location associated with p, i.e., the fields of pointer type
are empty (they will be updated by subsequent iterations) and all other fields
contain •, env[l -> p] returns an updated version of env where the location l

is associated with the structural pointer p, and fields of l returns the list of
symbolic locations of the fields of l of pointer type3.

extract _ _ _ env [] = env

extract aenv R vs env (l:ls) =

case find (not . R aenv l) vs of

None -> p = fresh pointer

env ’ = env[p -> *][l -> p]

lfs = f i e l d s of l

extract aenv R (l:vs) env ’ (ls++ lfs)

Some v -> p = lookup env v

env ’ = env[l -> p]

extract aenv R vs env ’ ls

We define the extraction function η+ for may-aliases in terms of the above
extract function as follows, where initΓ is the list of initial symbolic locations
— the variables of pointer type (as given by the store type).

η+(E,R+, Γ) = extract E R+ [ ] ([ ], [ ]) initΓ

Thus, η+(E,R+, Γ) extracts a may-alias view of E, using R+ starting in the
variables given pointer types by Γ.

The correctness of the algorithm relies on the substitutivity property of
the may-alias information. Termination of the algorithm relies on the abstract
environment and the number of fields being finite and every non-terminated
path of field references in the may-alias information containing a cycle, i.e.,
there must not be an infinite number of unaliased locations; a formal definition
of this cyclic path property is found in Appendix A. For each underlying may-
alias information there exist plugins for which these properties hold.

5.5 Extracting Must-Aliases

Similar to above, we can extract must-alias information using the must-alias
plugin R−.

The algorithm takes a must-alias plugin R, an abstract environment aenv,
a list of previously visited symbolic locations vs, a a structural environment
which is modified during the traversal env, and a work list of symbolic locations
yet to be visited ls. Each iteration removes the topmost symbolic location of

3All aliased locations are required to have the same type.
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the work list, and checks it against all previously visited symbolic locations. If
it is must-aliased with any of the previously inspected symbolic locations it is
associated with the structural pointer of the found previous location; otherwise,
it is checked whether it is must-aliased with itself, which would imply that it
is guaranteed not to be a null-pointer4. If it is must-aliased with itself a fresh
structural pointer is introduced and the symbolic location associated with it. If
it is not then the symbolic location is associated with •.

extract _ _ _ env [] = env

extract aenv R vs env (l:ls) =

case find (not . R aenv l) vs of

None -> i f R aenv l l then

p = fresh pointer

env ’ = env[p -> *][l -> p]

lfs = f i e l d s of l

extract aenv R (l:vs) env ’ (ls++ lfs)

e l se

env ’ = env[l -> •]

extract aenv R vs env ’ ls

Some v -> p = lookup env v

env ’ = env[l -> p]

extract aenv R vs env ’ ls

The extraction function η− for must-aliases is defined in the same way as
the extraction function for may-aliases and correctness and termination of the
algorithm rely on the same properties.

6 Structural Weakening

This section details how may-alias information can be used to safely weaken the
types of heap locations. The section begins with two examples that show why a
naive extension of the standard weakening rule is unsound, and how structural
alias information can be used to provide a sound weakening rule by demanding
that all aliased locations are subject to the same type changes. Thereafter, we
introduce the basis for the weakening, the decorating structural well-formedness
— essentially a well-formedness relation for structural values — and show how
it can be used to create a sound weakening rule. The section ends with a small
example illustrating the use of the weakening rule.

As we saw in Section 4, a weakening rule based on depth-subtyping is not
sound in the presence of aliases and updates. The problem is that depth-
subtyping makes it possible to create different type views of aliased symbolic
locations. Without alias information we are forced to impose an invariant type
view of all locations that may be aliased using width-subtyping; with may-alias
information it is possible to relax this demand and demand an invariant type
view only on the locations that are may-aliased.

4This is the case since the plugin for must-alias excludes the null-pointer.
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To illustrate this, assume a set of concrete environments S, e.g., the set of
environments reaching a certain program point in a particular program. Assume
that x and y are may-aliased and that x and y are unaliased with z, i.e., there
exist at least one environment in S, where x and y point to the same record,
and in no environments in S does z point to the same record as x or y. Assume
further that all of x, y and z point to records of one field f holding a natural
number, i.e., that the environments in S are well-formed in Σ1 = {x : A, y : A, z :
A}, where ∆(A) = {f : nat}. The possible heaps in S (up-to type constrained
isomorphism and omitting null-pointers) can be illustrated as follows.

It is clear that we can safely change the types of x and y to hold an integer as
long as we change both, i.e., all environments in S are well-formed in Σ2 = {x :
B, y : B, z : A}, where ∆(B) = {f : int}.

To see how structural may-alias information can be used to achieve this consider
the structural representation of the situation above: ŝ = {x 7→ p̂1, y 7→ p̂1, z 7→

p̂2}, with ĥ = {p̂1 7→ {f 7→ •}, p̂2 7→ {f 7→ •}}.

As can be seen in the picture and as was described in Section 5.2 all locations
that may be aliased contain the same structural pointer. Thus, the same ideas
underlying width well-formedness for concrete environments can be used for
structural may-alias information to ensure a uniform type-view for all may-
aliased locations.

Decorated Structural May-Aliases We define the well-formedness relation
for structural may-aliases following the standard well-formedness; in addition
we let the structural well-formedness produce a type decorated version of the
structural environment — the use of the decoration will become apparent below.
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Ω ⊢ • : τ y •τ , τ ∈ {nat, int , bool}
Ω(p̂) <: A A <: Ω(p̂)

Ω ⊢ p̂ : A y p̂

(f, τ) ∈ ω. Ω ⊢ r̂.f : τ y r̂d.f
dom(r̂) = dom(r̂d) = dom(ω)

Ω ⊢ r̂ : ω y r̂d

∀(x, τ) ∈ Σ. Ω ⊢ ŝ(x) : τ y ŝd(x)
dom(ŝ) = dom(ŝd) = dom(Σ)

Ω ⊢ ŝ : Σ y ŝd

∀(p̂,A) ∈ Ω. Ω ⊢ ĥ(p̂) : ∆(A) y ĥd(p̂)

dom(ĥ) = dom(ĥd) = dom(Ω)

Ω ⊢ ĥ y ĥd

Ω ⊢ ŝ : Σ y ŝd Ω ⊢ ĥ y ĥd

Ω ⊢ (ŝ, ĥ) : Σ y (ŝd, ĥd)

Figure 5: Decorating Structural Well-formedness

The language for the decorated structural may-aliases is identical to the
language for the structural may-aliases with the addition of a type decoration
on all occurrences of •:

v̂ ::= p̂ | •τ

When needed we use v̂d, r̂d, ŝd, ĥd, and Êd to distinguish decorated values,
records, stores, heaps and environments from the undecorated structural may-
alias counterparts.

Concretization of Decorated Structural May-Aliases The concretiza-
tion is constrained to the meaning of the type annotation, instead of all values
apart from the pointers

γ+
ξ+(•τ ) = [[τ ]]

where [[nat]] is the set of natural numbers, [[int ]] the set of integers, and [[bool]]
the set of booleans.

Decorating Structural Well-formedness Let Ω range over structural pointer
typings, i.e., maps from structural pointers to record identifiers. The rules for
the decorating structural well-formedness are found in Figure 5, and are easily
extended to decorated structural values by replacing the rule for • with:

τ1 <: τ2

Ω ⊢ •τ1
: τ2 y •τ1

τ1, τ2 ∈ {nat, int , bool}

The decorating structural well-formedness has two important properties. First,
the type decoration does not exclude any well-formed environments.
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Lemma 6.1 (Stability of Type Decoration)

Ωmax ⊢ Ê : Σ y Êd ∧ δ ⊢ E : Σ ∧ E ∈ γ+(Ê) =⇒ E ∈ γ+(Êd)

where Ωmax denotes the maximal Ω with respect to which Ê is well-formed in
Σ. See Appendix B for details.

Proof 6.1 First, E ∈ γ+(Ê) implies the existence of ξ+ such that E ∈ γ+
ξ+(Ê).

Now, Lemma B.2 gives us that E ∈ γ+

ξ+

E,Σ

(Ê). The result is immediate from

Lemma B.7, and Lemma B.9.

Second, well-formedness is preserved by concretization of the decorated struc-
tural environment. Let δΩ,ξ+ be the pointer typing induced by Ω and ξ+, i.e.,

δΩ,ξ+(p) = Ω(ξ+−1
(p)). We know that ξ+−1

exists, since all may-alias sound
pointer valuations are injective.

Lemma 6.2 (Preservation of Well-formedness under Concretization)

Ω ⊢ Êd : Σ ∧ E ∈ γ+
ξ+(Êd) =⇒ δΩ,ξ+ ⊢ E : Σ

Proof 6.2 Given that E = (s, h) we must show that δΩ,ξ+ ⊢ s : Σ, and that
δΩ,ξ+ ⊢ h. The result is immediate from Lemma C.3, and Lemma C.5.

One way of viewing the decorated structural may-alias representation is as a
may-alias aware environment type, i.e., an environment type where types have
been specialized to the may-alias structure. The following picture of the stan-
dard type view to the left and the decorated structured may-alias environment
from the example above to the right illustrates this idea.

It is easy to see how the structural may-alias information limits the freedom of
the types as illustrated by the following picture showing three different environ-
ment types and a structural environment (rightmost). The structural environ-
ment gives a limit to the maximal possible type structure in the sense that it
defines which symbolic locations must have the same types. Thus, intuitively,
the two leftmost environment types are compatible, but not the third, since the
third tries to give x and y different types — A3 and A2 respectively.
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For a more detailed explanation, assume that A1, A2, and A3 are different.
The first example can be accommodated by choosing A4 = A5 = A1 and thus
τ4 = τ5 = τ1, the second example by choosing A4 = A2 and A5 = A1, and thus
τ4 = τ2 and τ5 = τ1, whereas the third example cannot be accommodated, since
that would imply choosing A4 and τ4 to two different types corresponding to
different type views for aliased locations.

With this view the well-formedness for decorated structural values can be
used to formulate something that can be seen as a constrained depth-subtype
relation. To see this let Ω1 ⊢ Ê : Σ1 y Êd∧Ω2 ⊢ Êd : Σ2 be written Σ1 <: bE Σ2.
We have the following semantic property.

Lemma 6.3 (Structural Subtype)

Σ1 <: bE Σ2 ∧ E ∈ γ+
ξ+(Ê) ∧ δ ⊢ E : Σ1 =⇒ ∃δ. δ ⊢ E : Σ2

Proof 6.3 We have that (1) Ω1 ⊢ Ê : Σ1 y Êd, (2) Ω2 ⊢ Êd : Σ2, (3) E ∈

γ+
ξ+(Ê), and (4) δ ⊢ E : Σ1

First, Lemma 6.1 together with (1, 4, 3) gives us that (5) E ∈ γ+
ξ+(Êd). Now,

Lemma 6.2 together with (2, 5) gives us that δΩ2,ξ+ ⊢ E : Σ and we are done.

To illustrate the use consider the example from above where ŝ = {x 7→

p̂1, y 7→ p̂1, z 7→ p̂2}, with ĥ = {p̂1 7→ {f 7→ •}, p̂2 7→ {f 7→ •}}, Σ1 = {x :
A, y : A, z : A} and Σ2 = {x : B, y : B, z : A}, where ∆(A) = {f : nat}, and
∆(B) = {f : int}. In this example the two steps of Σ1 <:(bs,bh) Σ2 are {p̂1 7→

A, p̂2 7→ A} ⊢ (ŝ, ĥ) : Σ1 y (ŝd, ĥd), and {p̂1 7→ B, p̂2 7→ A} ⊢ (ŝd, ĥd) : Σ2,

for ŝd = ŝ and ĥd = {p̂1 7→ {f 7→ •nat}, p̂2 7→ {f 7→ •nat}}, since nat <: int ,
as illustrated by the following picture, where the subtyping annotations express
the demands put on the structural environments by Σ1 in the middle structural
environment and Σ2 in the rightmost structural environment.

The picture illustrates how Σ1 has decorated the the original structural envi-
ronment (ŝ, ĥ), and how Σ2 is able to change the type view of x and y to a super
type of the previous type recorded by the decorated structural environment.

Structural Weakening Based on this we can create a new weakening rule
based on well-formedness where the structural representations of the entry and
exit environments of a command c are used to ensure that all aliased pointers
have compatible type views. Let MI and MO range over entry and exit solutions,
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respectively, and let η+ be the may-alias extraction function.

Σ2 ⊢MI ,MO,R+,R−

c ⇒ Σ3, ξ1 ξ1 <: ξ2

Σ1 <:η+(MI(l1),R+,Σ1) Σ2 Σ3 <:η+(MO(l2),R+,Σ3) Σ4

Σ1 ⊢MI ,MO,R+,R−

(c)l1
l2
⇒ Σ4, ξ2

We prove soundness of the structural weakening rule by proving preservation of
types for it.

Lemma 6.4 (Preservation of Types of Structural Weakening)

Σ1 ⊢MI ,MO,R+,R−

c ⇒ Σ2, ξ ∧ isCc (MI ) ∧ osCc (MO ) =⇒

E ∈ C ∧ δ1 ⊢ E : Σ1 ∧ 〈E, c〉 → C =⇒

∃δ2. δ2 ⊢MI ,MO,R+,R−

C : Σ2, ξ

Proof 6.4 Assume (1) Σ1 ⊢MI ,MO,R+,R−

c ⇒ Σ2, ξ, (2) isCc (MI ), (3) osCc (MO ),
(4) E ∈ C, (5) δ1 ⊢ E : Σ1 and (6) 〈E, c〉 → C.

(1) gives (7) Σ′
1 ⊢MI ,MO,R+,R−

c ⇒ Σ′
2, ξ

′, (8) ξ′ <: ξ, (9) Σ1 <:η+(MI(l1),R+,Σ1)

Σ′
1, and (10) Σ′

2 <:η+(MO(l2),R+,Σ′

2
) Σ2.

(2) and (4) gives (13)E ∈ γ+(MI(l1)) which together with soundness of the
extraction function for may-aliases gives (14)E ∈ γ+

ξ+

1

(η+(MI(l1),R+, Σ1)) for

some ξ+
1 . From this Lemma 6.3 (11)δ′1 ⊢ E : Σ′

1 for some δ′1. Now the induction
hypothesis is applicable, which gives (12) δ2 ⊢ C : Σ′

2, ξ for some δ2. We proceed
with an analysis of (12).

abnormal termination This case gives δ2 ⊢ E2 : Σe for some Σ3, where
C = ⊥E3

, which immediately gives δ2 ⊢ ⊥E2
: Σ′

2,⊥Σ3
.

termination This case gives δ2 ⊢ E2 : Σ′
2, where C = E2. From osCc (MO ), we

get that E2 ∈ γ+(MO(l2)), and, thus, from the soundness of the extraction
function that E2 ∈ γ+

ξ+

2

(η+(MO(l2),R+, Σ′
2)) for some ξ+

2 . Similar to

above Lemma 6.3 gives δ′2 ⊢ E2 : Σ2, for some δ′2 which gives us that
δ′2 ⊢ E2 : Σ2, ξ from which the result is immediate.

non-termination This case gives Σ3 ⊢MI ,MO,R+,R−

c′ ⇒ Σ′
2 for some Σ3, and

δ2 ⊢ E : Σ3. In the same way as above we establish that δ′2 ⊢ E2 : Σ2 for

some δ′2. It now remains to show that Σ′ ⊢MI ,MO,R+,R−

c′ ⇒ Σ2, which
is immediate from the structural weakening rule.

Example Use We end this section with a small example of the use of struc-
tural weakening for achieving a limited form of flow-sensitive types on the heap.
Assuming ∆(A) = {f : nat} consider the following program, which is not ty-
pable in the standard type system since int is not a subtype of nat.

A x = new A; A y := x; x.f := 0; x.f := -1;
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However, even a simplistic alias analysis is able to determine that x and y are
may-aliased, and unaliased with all other locations. This means that before
x.f := −1 the type of x and y can be weakened to B, given that ∆(B) = {f :
int}, which allows us to perform the update. Since all aliases have their types
changed uniformly, the pitfall of introducing the possibility of casting values is
avoided.

7 Strong Updates

This section shows how may-alias information and must-alias information can
be combined to allow for heap updates that do not follow the subtype hierarchy
— similar to the updates of variables where the variable type environment is up-
dated with the type of the value written into the variable. This differs from the
structural weakening of the previous section, where the structure of the environ-
ments was used to express which types soundly described the environments, and
the update was supported by finding a type in which the update was supported.
For strong updates the actual update is more central; the old environment is
typically not well-formed in the new environment type, and vice versa. Consider
the following tiny program, which is typable in pre-type Σ1 = {x : τ} for any
type τ , and post-type Σ2 = {x : bool} using the flow sensitive type rule for
variables.

x := 0; x := true ;

Clearly, after assigning a boolean to x the environment is not typable in the
post-type of x := 0, in which the type of x is nat.

The soundness of the flow-sensitive type rule for variables comes from the
fact that no variables are aliased. In the same way, if a structural (may-) pointer
is uniquely associated with a symbolic location we know that that symbolic lo-
cation is alias free and can safely be strongly updated. However, demanding
that a location is completely unaliased to support strong updates is unnecessar-
ily restrictive. For instance, if we know that all aliases to the symbolic location
are must-aliases, we know that a strong update is safe, given that we change
the type of all must-aliases accordingly. Thus, it would be natural to expect
the following program to be typable in the empty pre-type { } and post-type
{x : B, y : B}, where ∆(A) = {f : τ} for some τ , and ∆(B) = {f : bool}.

A x := new A; A y := x; x.f := true ;

The previous section showed how may-alias information can be used to support
weakening, and how weakening can be used to support a limited form of flow sen-
sitive types. This was achieved by the use of a structural width well-formedness
relation that guaranteed concrete width well-formedness. To fit with the re-
sults of the previous section, and with the correctness proof of the standard
type system we will use preservation of width well-formedness as the base for
the correctness argument of this section. This restricts the result to updates of
must-aliased location that are not reachable via may-aliases. This restriction is
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justified by the fact that the presence of may-aliases would constrain the update
to follow the sub-type hierarchy, which together with the demand of concrete
width well-formedness would result in the same expressive power as structural
weakening.

Combined May- and Must-alias Information The approach we consider
is based on a sound merge of may- and must-alias information that guarantees
that the must-aliased heap locations are not reachable via may-aliases. In short,
this is achieved by annotating the pointers in the structural environment as
either may-alias pointers or must-alias pointers and making sure that must and
may aliases never concretize to the same concrete pointer.

As before we introduce the syntax, the semantics in form of a concretization
function and decorating structural well-formedness; for brevity we only present
the changes to what has previously been presented. First, the syntax for struc-
tural values is extended to contain both structural may-alias pointers p̂+ and
structural must-alias pointers p̂−.

v̂ ::= p̂− | p̂+ | •

The separation between must and may aliases is achieved by demanding shared
pointer valuations with pairwise disjoint codomains with the additional demand
that the pointer valuations map all must-alias pointers to singleton sets, and to
limit the concretization of • to non-pointer values. The demand that the pointer
valuations are pairwise disjoint also for must-aliased pointers is not a restriction
since two must-aliased pointers that concretize to the same concrete pointer is
by definition may-aliased and may-aliases have priority over must-aliases in the
merged alias information.

Definition 7.1 (May- and Must-alias sound pointer valuations) Let p̂
range over structural may-alias pointers and structural must-alias pointers.

p̂ ::= p̂+ | p̂−

A pointer valuation ξ is may- and must-alias sound if it has pairwise disjoint
codomain that does not contain the null-pointer and maps all structural must-
alias pointers to singleton sets.

∀p̂1, p̂2 ∈ dom(ξ) . p̂1 6= p̂2 =⇒ ξ(p̂1) ∩ ξ(p̂2) = ∅ ∧ ∀p̂− ∈ dom(ξ) . |ξ(p̂−)| = 1

Let ξ∗ range over may- and must-alias sound pointer valuations.

The meaning of the combined may- and must-alias information is formulated in
terms of a concretization function γ∗.

γ∗
ξ∗(•) = V\p γ∗

ξ∗(p̂+) = ξ∗(p̂+) ∪ {nil} γ∗
ξ∗(p̂−) = ξ∗(p̂−)

Similarly to before we form a decorated version of the structural values, stores
and heaps by annotating • with a type. The concretization is changed accord-
ingly to γ∗

ξ∗(•τ ) = [[τ ]], where [[int ]] is the set of integers, [[nat]] the set of natural
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numbers, and [[bool]] the set of booleans. The set of concrete environments as-
sociated with one particular combined structural environment is the union over
all may- and must-alias sound pointer valuations.

γ∗(Ê) =
⋃

ξ∗

{γ∗
ξ∗(Ê)}

The decorating structural well-formedness for the combined may- and must-
alias information is immediate both for the undecorated syntax and the deco-
rated syntax, using the rule for structural may pointers of Figure 5 for structural
may pointers, and the rules for the undecorated •, and the decorated •τ from
Section 6 above.

Ω ⊢ • : τ y •τ , τ ∈ {nat, int , bool}

τ1 <: τ2

Ω ⊢ •τ1
: τ2 y •τ2

τ1, τ2 ∈ {nat, int , bool}

Ω(p̂−) = A1 A1 <: A2

Ω ⊢ p̂− : A2 y p̂−
Ω(p̂+) <: A A <: Ω(p̂+)

Ω ⊢ p̂+ : A y p̂+

The structural well-formedness of the extended structural language have the
same properties as the structural well-formedness for may-aliases of the previous
section.

Lemma 7.1 (Stability of Type Decoration)

Ωmax ⊢ Ê : Σ y Êd ∧ δ ⊢ E : Σ ∧ E ∈ γ∗(Ê) =⇒ E ∈ γ∗(Êd)

Proof 7.1 First, E ∈ γ∗(Ê) implies the existence of ξ∗ such that E ∈ γ∗
ξ∗(Ê).

Now, Lemma B.2 gives us that E ∈ γ∗
ξ∗

E,Σ
(Ê). The result is immediate from

Lemma B.7, and Lemma B.9.

Lemma 7.2 (Preservation of Well-formedness under Concretization)

Ω ⊢ Ê : Σ ∧ E ∈ γ∗
ξ∗(Ê) =⇒ δΩ,ξ∗ ⊢ E : Σ

Proof 7.2 Given that E = (s, h) we must show that δΩ,ξ∗ ⊢ s : Σ, and that
δΩ,ξ∗ ⊢ h. The result is immediate from Lemma C.3, and Lemma C.5 below.

Merging May and Must Alias Information A structural may-alias envi-
ronment, and a structural must-alias environment are mergeable with respect to
a merge function f if the concretization of the merged result is conservative. Let
Ê+ range over structural may-alias environments, and Ê− range over structural
must-alias environments.

γ+(Ê+) ∩ γ−(Ê−) ⊆ γ∗(f(Ê+, Ê−))
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An abstract environment E is mergeable with respect to a merge function f , a
may plugin R+, a must plugin R−, and an environment type Σ, if the extracted
may- and must-alias environments are mergeable. We define the function merge
as merge(E,R+,R−, Σ) = f(η+(E,R+, Σ), η−(E,R−, Σ)) given that E is merge-
able with respect to f , R+, R−, and Σ, and undefined otherwise. It is always
possible to find merge functions, e.g., simply using the may-alias information
is sound, possibly with the additional optimization that unique may-aliases are
replaced by must-aliases as discussed above. For generality, in the following we
parameterize over the merge function.

Strong Updates Using the combined may- and must-alias information we can
create a flow-sensitive field update rule from the flow-insensitive counterpart.
First, consider the type rule for field updates from Section 4 above.

Σ(x1) = A Σ(x2) = τ τ <: ∆(A).f

Σ ⊢ x1.f := x2 ⇒ Σ,⊥Σ

Using the ideas outlined above, we can extract the merged alias-information;
if the merge succeeds we know that the result is an accurate representation
of the concrete environments reaching the command. Further, we know by
construction that must-alias pointers form semi-isolated subgraphs in the heap
in the sense that no may alias pointer points into the subgraphs, but may very
well point out from it, as illustrated below, where + indicates may-aliases and
− must-aliases. For the may-alias pointer p̂+, represented by the dashed line
in the figure, to point to the same position as the must-alias pointer p̂−, they
must be equal, i.e., p̂+ = p̂−, which is clearly not possible.

The basic idea is to perform the update in the type decorated structural
representation of the environment and making sure that the new structural
environment is well-formed with respect to the exit type. Let updf (p̂−, v̂, Ê) =

(ŝ1, ĥ2) given that Ê = (ŝ1, ĥ1), r̂1 = ĥ1(p̂
−), r̂2 = r̂1[f 7→ v̂], and ĥ2 = ĥ1[p̂

− 7→
r̂2], i.e., the result of updating the field f with v̂ in the record pointed to by p̂−

in Ê, defined identically for concrete environments. The rule for strong updates
is defined as follows.

Ω1 ⊢ merge(MI(l),R+,R−, Σ1) : Σ1 y (ŝ1, ĥ1)
ŝ1(x1) = p̂− ŝ1(x2) = v̂

Ω2 ⊢ updf(p̂−, v̂, (ŝ1, ĥ1)) : Σ2

Σ1 ⊢MI ,MO,R+,R−

(x1.f := x2)
l ⇒ Σ2,⊥Σ1
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The soundness of this rule relies on one important property for updates over
must-aliases that expresses the soundness of the structural update.

Lemma 7.3 (Stability of Must-update under Concretization)

{updf(p, v, E) | E ∈ γ∗
ξ∗(Ê), p ∈ γ∗

ξ∗(p̂−), v ∈ γ∗
ξ∗(v̂)} = γ∗

ξ∗(updf(p̂−, v̂, Ê))

Proof 7.3 Since the store is unaffected by the update is suffices to show that
the property holds for heaps, which is shown in the following lemma.

Lemma 7.4 (Stability of Must-update under Heap Concretization)

{h[p 7→ r] | h ∈ γ∗
ξ∗(ĥ), p ∈ γ∗

ξ∗(p̂−), r ∈ γ∗
ξ∗(r̂)} = γ∗

ξ∗(ĥ[p̂− 7→ r̂])

Proof 7.4 The proof relies on the facts that ξ∗ has a pairwise disjoint codomain
and γ∗

ξ∗(p̂−) is a singleton set not containing the null-pointer, since p̂− is a
must-alias. Let {p} be this set. Intuitively, the reasoning is as follows. On

the left hand side we have that in all heaps in the concretization of ĥ, p points
to one of the concretizations of ĥ(p̂−). Similarly, on the right hand side we

have that in all heaps in the concretization of ĥ[p̂− 7→ r̂], p points to one of

the concretizations of r̂. Now, if we take the concretization of ĥ and update p
to point to a record in the concretization of r̂ then we get the same set as the
concretization of ĥ[p̂ 7→ r̂].

If p̂− was concretized to more than one concrete pointer, we would on the
left hand side add heaps where only one of the concrete pointers is updated to
point to records in the concretization of r̂, the other would still point to records
in the concretization of ĥ(p̂−).

If ξ∗ did not have a pairwise disjoint codomain, p might be in the concretiza-
tion of more structural pointers than p̂. This would require r to not only be in
the concretization of r̂ but also in the concretization of each structural record
pointed to by the additional structural pointers, something that in general would
not be the case.

To see why the proof does not hold for may-aliases, it helps to illustrate why
it holds for must-aliases. In fact, we can easily justify that {updf(p, v, E) | E ∈

γ∗
ξ∗(Ê), p ∈ γ∗

ξ∗(p̂+), v ∈ γ∗
ξ∗(v̂)} ⊇ γ∗

ξ∗(updf (p̂+, v̂, Ê)), i.e., that the struc-
tural update is no longer guaranteed to be a sound approximation of the up-
date. This comes from the fact that γ∗

ξ∗(updf(p̂+, v̂, Ê)) only generates heaps

where the records pointed to by all pointers p ∈ γ∗
ξ∗(p̂+) are updated whereas

{updf(p, v, E) | E ∈ γ∗
ξ∗(Ê), p ∈ γ∗

ξ∗(p̂+), v ∈ γ∗
ξ∗(v̂)} only updates the record

pointer to by p. Consider the following example, where ŝ = {x 7→ p̂+
1 , y 7→ p̂+

1 },

with ĥ = {p̂+
1 7→ {f 7→ •nat}}.
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As described, the possible heaps concretized from (ŝ, ĥ) (ignoring null-pointers)
can be illustrated as follows.

Updating the rightmost heap by x.f := true, i.e., s1 7→ {x 7→ p1, y 7→ p2}, and
h1 = {p1 7→ {f 7→ n2}, p 7→ {f 7→ n3}} results in a new heap h2 7→ {p1 7→
{f 7→ true}, p 7→ {f 7→ n3}}, illustrated below, i.e., where the record pointed
to by y remains unchanged, since x and y were not aliased in this particular
environment.

However, updf (p̂+, v̂, Ê) = (ŝ, ĥ3), where ĥ2 7→ {p̂1 7→ {f 7→ •bool}, will only
produce environments of the following form.

This problem does not occur with must-aliases, since must-aliased locations are
guaranteed to alias, i.e., ŝ = {x 7→ p̂−1 , y 7→ p̂−1 }, with ĥ = {p̂−1 7→ {f 7→
•nat}} will only concretize to environments of the following structure, which are
correctly modeled by the structural update.

With this, we prove the soundness of the strong update rule by proving its
case in a preservation of types proof in the same way as in Section 6 above.
Again, since the rule preserves width well-formedness under the assumption
that the weakened command also preserves width well-formedness it can safely
be added to the type system in Figure 3.

Lemma 7.5 (Preservation of Types of Strong Updates)

Σ1 ⊢M1,M2,η+,η−

x1.f := x2 ⇒ Σ2, ξ∧

isCc (MI ) ∧ osCc (MO ) =⇒

∀E ∈ C. δ1 ⊢ E : Σ1 ∧ 〈E, x1.f := x2〉 → C =⇒

∃δ2. δ2 ⊢ C : Σ2, ξ



Plugins for Structural Weakening and Strong Updates 29

Proof 7.5 Assume an E ∈ C, such that (1) δ1 ⊢ E : Σ1, and (2) 〈E, x1.f :=
x2〉 → C. We must show that δ2 ⊢ C : Σ2, ξ for some δ2.

(2) gives two possible cases: 1) the execution fails due to x1 containing a
null-pointer, and 2) the execution succeeds and C = updf (p, v, E) = (s, h[p 7→
r[f 7→ v]] for E = (s, h). The first case is a simple exception propagation, and
we focus on the second case in the following.

First, the soundness of the merge function gives us that together with (1)

and Lemma 7.1 gives that E ∈ γ∗
ξ∗(ŝ1, ĥ1) for some pointer valuation ξ∗, which

also gives that p ∈ γ∗
ξ∗(p̂−), and v ∈ γ∗

ξ∗(v̂), since p̂− = ŝ(x1), and v̂ = ŝ(x2).

We have that updf(p, v, E) ∈ γ∗
ξ∗(updf (p̂−, v̂, (ŝ1, ĥ1))) from Lemma 7.3, and

the result is immediate from Lemma 7.2.

Example Use We end this section with a variation of the example of the
previous section. Assuming ∆(A) = {f : nat} we saw how the following program
was typable using structural weakening, by weakening the type of x and y to
B, where ∆(B) = {f : int}.

A x = new A; A y := x; x.f := 0; x.f := -1;

As discussed, structural weakening is limited to type changes that are supported
by the subtype hierarchy. Thus, the following minor modification to the program
makes the program untypable using structural weakening.

A x = new A; A y := x; x.f := 0; x.f := true ;

As in the case above, even a simplistic alias analysis is able to determine that
x and y are not only may-aliases but also must-aliases, and unaliased with
all other locations. This means that the type rule for strong updates can be
used to type x.f := true which results in x and y getting the type B, where
∆(B) = {f : bool}. The strong update is safe, since we know that x and y
contain the same pointer in all program runs, and that this pointer is different
from all other pointers.

8 Related Work

Using alias information to improve the precision of other analysis is widespread,
e.g., [ABB06, CG93, CCL+96, LH98, PC04, FTA01, DF01, SWM99, WM01].
Common to most of these analyses is that they compute the needed alias in-
formation; our approach allows for the alias analysis to be parameterized, al-
lowing different alias analyses to be plugged in with relative ease. Of the above
mentioned work only the work on extending single static assignment (SSA) to
non-scalar variables [CCL+96, CG93, LH98] uses parameterized information. It
would be interesting to investigate to which extent the plugins framework could
benefit the rest of the analyses.

Most closely related is the work by Smith, Walker and Morrisett [SWM99].
Therein they develop a pseudo-linear type system for alias types allowing for
limited flow-sensitive types of aliased locations, and safe deallocation. With
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respect to the type change, our work is a generalization of theirs; their flow-
sensitivity is limited to linear types, and a very specific extension using dynamic
type checking.

Also related is the work by Foster, Terauchi and Aiken [FTA01] on infer-
ring flow-sensitive type qualifiers. Even though they limit their work to type
qualifiers nothing seems to prohibit their method to be applied to the full types
instead of only the qualifiers. Again our work generalizes their work with re-
spect to the use of alias information for flow-sensitivity, since they restrict the
flow-sensitivity to linear types; it would be interesting to see to which extent
our ideas could be used to generalized their approach.

In [ABB06] Amtoft, Bandhakavi and Banerjee develop a hoare-style logic
for reasoning about noninterference. In particular, the logic contains region
assertions — a simple form of alias analysis — used to increase the precision of
the analysis.

In [HS06] Hunt and Sands study a flow-sensitive type system for information
flow security; their work shows us that there exists a most general lattice for
each program — the powerset lattice of the variables — and that, for a simple
imperative language with variables, one can form a type based transformation
from the flow-sensitive type system to a flow-insensitive one. This suggests
that flow-sensitivity might not be necessary for information flow security. The
transformation does, however, rely on the ability of easily cloning the contents of
variables, and statically allocating more variables to hold the values of different
types. This is not always possible, or practical. For instance, in many JVM
implementations the number of simultaneously live variable is limited.

With respect to the computation of alias information, see the work on shape
analysis by Sagiv, Reps and Wilhelm [SRW96], or Walker and Morrisett [WM01]
on recursive alias types. For a more recent result on shape analysis see the
work by Yang et al. [YLB+08]. This work focuses on combining precision
and scalability for use in the verification of device drivers and contains many
interesting references to real world application of pointer analyses. For a more
standard exposition of alias analysis see, e.g., [Deu94].

9 Conclusion

We have presented a way to allow for flow-sensitive types on the heap based on
our plugin framework. In particular we have shown how may-alias information
can be used to support structural weakening, where information about may-
aliases is used to allow for a safe use of depth-subtyping in the subtyping rule,
which made it possible to change the types of heap locations while retaining a
uniform type view of all may-aliases, thus guaranteeing conformance with the
concrete width well-formedness. Structural weakening only supports changing
heap location type to more general types.

We have also shown how the combination of may- and must-alias information
can be used to support strong updates, i.e., updates that do not have to follow
the subtyping hierarchy. This was done by using a combined representation of
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may-alias and must-alias information that guaranteed that no location was both
must-and may-aliased with any other location.

In addition to this we have shown how may- and must-alias information can
be extracted using our plugin framework. The use of the plugin framework
has very much contributed to the generality of this work by forcing us to think
abstractly about may- and must-aliases, and by allowing us a flexibility of ex-
ploring many different type rules with relative ease coming from the fact that
the rules are free from the computation of alias information, only containing its
usage.
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A Cyclic Path Property

The path property path(sl1 . . . sl2), expressing that the symbolic location sl2 can
be reached from the symbolic location sl1 by a number of field references, is
defined as follows where fs(sl) returns the set of pointer fields of the symbolic
location sl.

path(sl) ≡ true
path(sl1 . . . sln) ≡ path(sl1 . . . sln−1) ∧

∃f ∈ fs(sln−1). sln−1.f = sln

The cyclic property cyclic(sl1 . . . sln,R), expressing that there exists two
unique locations sli and slj in sl1 . . . sln such that they are related by the plugin
R, is defined in the following way.

cyclic(sl1 . . . sln,R) ≡ ∃i, j ∈ [1 . . . n]. i 6= j ∧ (sli, slj) ∈ R

Finally, we define the cyclic path property cyclicp(R), expressing that the
plugin R has an upper limit n on the length of acyclic paths.

cyclicp(R) ≡ ∃n. ∀sl1 . . . sln. path(sl1 . . . sln) =⇒ cyclic(sl1 . . . sln,R)

B Stability of Type Decoration

This section contains the proofs of stability of type decoration of the structural
may-aliases of Section 6, and the combined structural may- and must-aliases of
Section 7 — the former language is a sublanguage of the latter. In this section
all pointer valuations are may- and must-alias sound, why the ∗ superscript is
dropped from ξ∗ throughout.

Definition B.1 (Ω order) We define an order ≤ on abstract pointer typings
as follows.

p̂ ∈ dom(Ω2). Ω1(p̂) <: Ω2(p̂)

Ω1 ≤ Ω2

The intuition behind the order is that bigger abstract pointer typings place less
demands on structural environment.

Lemma B.1 (Maximal Ω) For a given structural environment Ê, there exists
a unique maximal (up to type constrained isomorphism) Ωmax, such that

Ω ⊢ Ê : Σ =⇒ Ω ≤ Ωmax ∧ Ωmax ⊢ Ê : Σ

Proof B.1 The intuition is that increasing abstract pointer typings place less
demands on the structural environment, and that the maximal abstract-pointer
typing for a given well-formed structural environment is given by Σ.

First, it is clear that for a given Ω there exists a maximal abstract-pointer
typing Ωmax obtainable by repeatedly choosing bigger pointer typings until no
bigger exists in which Ê is still Σ well-formed.
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Now, assume that there exists two different maximal pointer typings Ωmax1

Ωmax2
. It is clear that neither Ωmax1

≤ Ωmax2
, nor Ωmax2

≤ Ωmax1
, since in

such case one of them would not be maximal. Thus, there exists at least one
abstract pointer p̂ occurring at a symbolic location l, such that Ωmax1

(p̂) <: Σ(l),
and Ωmax2

(p̂) <: Σ(l), but with Ωmax1
(p̂) and Ωmax2

(p̂) incomparable. Because
of the use of width-subtyping we know that all shared fields of Ωmax1

(p̂), and
Ωmax2

(p̂) must be equal.
This gives us that Ωmax1

(p̂) has a field not in Ωmax2
(p̂) and vise versa. How-

ever, the incompatible fields are not forced by Σ(l), given by Ωmax1
(p̂) <: Σ(l),

and Ωmax2
(p̂) <: Σ(l), which means Ωmax1

(p̂) and Ωmax2
(p̂) are not maximal

— they can both be replaced by Ωmax1
(p̂) ⊓ Ωmax2

(p̂) <: Σ(l).
The maximal abstract pointer typing Ωmax is easily obtained by a fixed-point

iteration.

Pointers not being live require special care when establishing stability of type
decoration. To illustrate this, consider the case where ŝ(x) = p̂, ĥ(p̂) = {f 7→ •},
ξ(p̂) = {p1, p2}, Σ(x) = A and ∆(A) = {f : int}.

All heaps in the concretization of ĥ will have both p1 and p2 in its domain.
In all heaps that are well-formed with respect to Σ, the well-formedness relation
will require that the pointer that x contains will point to a record containing a
value that is well-formed with respect to the type int . The other pointer will,
however, not have any requirements placed on it since it will not be live.

However, in the concretization of the type decorated version of the heap,
ĥ(p̂) = {f 7→ •int}, both p1 and p2 will be required to point to records containing
values that are well-formed with respect to the type int .

This means that type decoration does not preserve concretizations for all
pointer valuations. In order to work around this, we restrict ourselves to only
consider the live pointers. This is reasonable to do, since a pointer that is
not live is semantically safe to ignore. More, specifically, noting that the well-
formedness relation only places requirements on pointers that are typed by Σ,
we limit ourselves to only consider pointers that are live and that are given a
type by Σ. We do this by defining Σ-reachability.

Definition B.2 (Σ-reachability) We say that p is Σ-reachable in E, written
p ∈ EΣ, if there exists a δ such that δ ⊢ E : Σ and there exists a symbolic
location l such that Σ(l) is defined and E(l) = p.

When establishing stability of type decoration this is done with respect to a
pointer valuation ξ whose codomain only consists of Σ-reachable pointers. We
call such a ξ minimal and define it in the following way.

Definition B.3 (Minimal ξ) For each environment E ∈ γξ(Ê) such that δ ⊢
E : Σ, we define the minimal pointer valuation ξE,Σ to be the sub-valuation of
ξ that only contains the pointers Σ-reachable in E.

∀p̂ ∈ dom(ξ), p ∈ ξE,Σ(p̂). p ∈ ξ(p̂) ∧ p ∈ EΣ
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Lemma B.2 (ξE,Σ preserves E)

Ω ⊢ Ê : Σ ∧ E ∈ γξ(Ê) ∧ δ ⊢ E : Σ =⇒ E ∈ γξE,Σ
(Ê)

Proof B.2 By construction - ξE,Σ contains all pointers that are live, and typed
in E, but no else. Thus, it removes all demands on things that are not live or
typed, while allowing for the same concretization of all live and typed locations.

Lemma B.3 (Σ-reachable locations are well-formed)

δ ⊢ E : Σ ∧ E(l) = v ∧ Σ(l) = τ =⇒ δ ⊢ v : τ

Proof B.3 By straightforward induction on the symbolic location.

Lemma B.4 (Σ-reachable pointers are well-formed)

δ ⊢ E : Σ ∧ p ∈ γξE,Σ
=⇒ ∃A . δ(p) = A

Proof B.4 The result is immediate, since ξE,Σ forms a subset of the Σ-reachable
pointers.

By definition if p ∈ γξE,Σ
there exists a symbolic location l such that E(l) = p

and Σ(l) = τ . From Lemma B.3 we have that δ ⊢ p : τ , which gives us τ = A1,
and δ(p) = A2 <: A1.

Lemma B.5

Ωmax ⊢ Ê : Σ ∧ δ ⊢ E : Σ ∧ E ∈ γξE,Σ
(Ê) =⇒

p ∈ ξE,Σ(p̂) ∧ p̂ ∈ dom(Ωmax)∧ =⇒ δ(p) <: Ωmax(p̂)

Proof B.5 First we state some properties needed.

1. Ωmax ⊢ Ê : Σ gives us that all symbolic locations l such that Σ(l) is defined

we either that Ê(l) = p̂+, Ê(l) = p̂−, or that Ê(l) = •.

2. Let Lbp+ be the set of symbolic locations such that for l ∈ Lbp+, Σ(l) is

defined and Ê(l) = p̂. Since E ∈ γξ(Ê) we have for each p ∈ ξ(p̂+) that
the set Lbp such that l ∈ Lp, Σ(l) is defined and E(l) = p is a subset of
Lbp+ .

3. Let Lbp− be the set of symbolic locations such that for l ∈ Lbp− , Σ(l) is

defined and Ê(l) = p̂. Since E ∈ γξ(Ê) we have for the unique p ∈ ξ(p̂−)
that the set Lp such that l ∈ Lp, Σ(l) is defined and E(l) = p is a equal
to the set Lbp− .

4. From, Ωmax ⊢ Ê : Σ we have that for all l ∈ Lbp+ it holds that Ωmax(p̂) <:
Σ(l) and Σ(l) <: Ωmax(p̂), i.e., all may-aliased locations have exactly the

same type view (up to renaming). Together with E ∈ γξ(Ê) this gives us
that all occurrences of concrete pointers p ∈ ξ(p̂) have the same type view.
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5. From, Ωmax ⊢ Ê : Σ we have that for all l ∈ Lbp− it holds that Ωmax(p̂) <:
Σ(l), i.e., all must-aliased locations have compatible type views Together

with E ∈ γξ(Ê) this gives us that all occurrences of concrete pointers
p ∈ ξ(p̂) have compatible type views.

First, using δ ⊢ E : Σ and p ∈ ξE,Σ(p̂), Lemma B.4 gives us δ(p) = A for
some A, i.e., δ(p) is defined. The proof has two cases.

May-alias case Assume p ∈ ξ(p̂+), and p̂+ ∈ dom(Ωmax); from above we have
that all l ∈ Lbp+ ⊇ Lp have exactly the same type view. Thus, δ(p) <:
Σ(l) = Ωmax(p̂+).

Must-alias case Assume p ∈ ξ(p̂−), and p̂− ∈ dom(Ωmax); from above we
have that l ∈ Lbp+ = Lp. Furthermore, since Ωmax is maximal we know
that Ωmax(p̂−) =

d
l∈L

bp+
Σ(l). Thus, since for all l ∈ Lp it holds δ(p) <:

Σ(l) we have that δ(p) <: Ωmax(p̂−) <: Σ(l).

Lemma B.6 (Stability of Value Type Decoration)

Ωmax ⊢ v̂ : τ1 y v̂d ∧ δ ⊢ v : τ2 ∧ τ2 <: τ1 ∧ v ∈ γξ(v̂) =⇒ v ∈ γξ(v̂d)

Proof B.6 Assume (1) Ωmax ⊢ v̂ : τ1 y v̂d, (2) δ ⊢ v : τ2, (3) τ2 <: τ1 and
(4) v ∈ γξ(v̂).

The proof continues by a case analysis of (1).

case Ωmax ⊢ • : τ1 y •τ1
We must show that v ∈ γξ(v̂d) = [[τ1]] for the cases

where τ1 is one of int, nat or bool. This follows directly from (2) and (3).

case Ωmax ⊢ p̂ : A y p̂ Since the decoration does not affect the concretization
of pointers the result follows directly from (4).

Lemma B.7 (Stability of Store Type Decoration)

Ωmax ⊢ ŝ : Σ y ŝd ∧ δ ⊢ s : Σ ∧ s ∈ γξ(ŝ) =⇒ s ∈ γξ(ŝd)

Proof B.7 Assume (1) Ωmax ⊢ ŝ : Σ y ŝd, (2) δ ⊢ s : Σ, and (3) s ∈ γξ(ŝ).
We must show that ∀x ∈ dom(ŝd). s(x) ∈ γξ(ŝd(x)). We have that (4) ∀x ∈

dom(ŝ). s(x) ∈ γξ(ŝ(x)) from (3), and (2) gives us that (5) ∀x ∈ dom(Σ). δ ⊢
s(x) : Σ(x). Now, (1) gives us that (6) ∀(x, τ) ∈ Σ. Ωmax ⊢ ŝ(x) : τ y ŝd(x),
(7) dom(ŝ) = dom(ŝd), and (8) ∀x ∈ dom(ŝ) \ dom(Σ). ŝd(x) = ŝ(x).

Thus, assuming x ∈ dom(ŝd), we either have x ∈ dom(ŝ) \ dom(Σ) in which
case we are done by (8) or x ∈ dom(Σ) and x ∈ dom(ŝ) by (7). Now, (6) gives
Ωmax ⊢ ŝ(x) : Σ(x) y ŝd(x), (5) gives δ ⊢ s(x) : Σ(x), (4) gives s(x) ∈ γξ(ŝ(x)),
and we reach the conclusion via Lemma B.6.

Lemma B.8 (Stability of Record Type Decoration)

Ωmax ⊢ r̂ : ω1 y r̂d ∧ δ ⊢ r : ω2 ∧ ω2 <: ω1 ∧ r ∈ γξ(r̂) =⇒ r ∈ γξ(r̂d)
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Proof B.8 Assume (1) Ωmax ⊢ r̂ : ω1 y r̂d, (2) δ ⊢ r : ω2, (3) ω2 <: ω1, and
(4) r ∈ γξ(r̂).

To show r ∈ γξ(r̂d) we need to show that ∀f ∈ dom(r̂d). r.f ∈ γξ(r̂d.f).

(1) gives (5) ∀(f, τ) ∈ ω1. Ωmax ⊢ r̂.f : τ y r̂d.f , (6) dom(r̂) = dom(r̂d),
and (7) ∀f ∈ dom(r̂) \ dom(ω). r̂d(f) = r̂(f). (2) gives (8) ∀(f, τ) ∈ ω2. δ ⊢
r.f : τ . (3) gives (9) ∀(f, τ) ∈ ω1. ω2.f = τ .

Assume f ∈ dom(r̂d). (6) gives that we have either f ∈ dom(r̂)\dom(ω1) and
we are done by (7), or f ∈ r̂, and f ∈ ω1 such that Ωmax ⊢ r̂.f. : ω1.f. y r̂d.f .
Now, (9) gives us that ω2.f = ω1.f , and (8) gives δ ⊢ r.f : ω2.f . With this
Lemma B.6 allows us to conclude.

Lemma B.9 Stability of Heap Type Decoration

Ωmax ⊢ (s, ĥ) : Σ y (ŝd, ĥd) ∧ δ ⊢ (s, h) ∧ h ∈ γξE,Σ
(ĥ) =⇒ h ∈ γξE,Σ

(ĥd)

Proof B.9 Assume (1) Ωmax ⊢ ĥ y ĥd, (2) δ ⊢ h, and (3) h ∈ γξE,Σ
(ĥ). (1)

gives (4) ∀(p̂,A) ∈ Ωmax. Ωmax ⊢ ĥ(p̂) : ∆(A) y ĥd(p̂), (5) dom(ĥ) = dom(ĥd),

and (6) ∀p̂ ∈ dom(ĥ) \ dom(Ω)max. ĥd(p̂) = ĥ(p̂). (2) gives ∀(p,A) ∈ δ. δ ⊢

h(p) : ∆(A), and (3) gives ∀p̂ ∈ dom(ĥ), p ∈ ξE,Σ(p̂). h(p) ∈ γξE,Σ
(ĥ(p̂)).

We must show that ∀p̂ ∈ dom(ĥd), p ∈ ξE,Σ(p̂). h(p) ∈ γξE,Σ
(ĥd(p̂)). Assume

p̂ ∈ dom(ĥd) and p ∈ ξE,Σ(p̂). (5) gives either p̂ ∈ dom(ĥ) \ dom(Ωmax) and we

are done by (6) or (p̂,A1) ∈ Ωmax and thus that Ωmax ⊢ ĥ(p̂) : ∆(A1) y ĥd(p̂)
by (4). From Lemma B.5 we have that δ(p) <: A1, which implies that δ is
defined for p, i.e., δ(p) = A2 for some A2. Now, (2) gives us δ ⊢ h(p) : ∆(A2),
and we are done by Lemma B.8.

Lemma B.10 (Stability of Type Decoration)

Ωmax ⊢: Ê : Σ y Êd ∧ δ ⊢: E : Σ ∧ E ∈ γ(Ê) =⇒ E ∈ γ(Êd)

Proof B.10 First, E ∈ γ(Ê) implies the existence of ξ such that E ∈ γξ(Ê).

Now, Lemma B.2 gives us that E ∈ γξE,Σ
(Ê). The result is immediate from

Lemma B.7, and Lemma B.9.

Lemma B.11 Type Decoration Preserves Well-formedness

Ω ⊢ Ê1 : Σ y Ê2 =⇒ Ω ⊢ Ê2 : Σ

Proof B.11 The result is immediate from inspecting the rules and noting that
the only decoration takes place in the well-formedness rule for • and that the
decoration is the type demanded by well-formedness, i.e., Ω ⊢ • : int : •int .
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C Preservation of Well-formedness under Con-

cretization

This section contains the proofs that well-formedness is preserved by concretiza-
tion of the structural may-aliases of Section 6, and the combined structural may-
and must-aliases of Section 7. In this section all pointer valuations are may-
and must-alias sound, why the ∗ superscript is dropped from ξ∗ throughout.

Lemma C.1 Preservation of Well-formedness under Concretization

Ω ⊢ Ê : Σ ∧ E ∈ γξ(Ê) =⇒ δΩ,ξ ⊢ E : Σ

Proof C.1 Given that E = (s, h) we must show that δΩ,ξ ⊢ s : Σ, and that
δΩ,ξ ⊢ h. The result is immediate from Lemma C.3, and Lemma C.5 below.

Lemma C.2 Preservation of Well-formedness under Value Concretization

Ω ⊢ v̂ : τ ∧ v ∈ γξ(v̂) =⇒ δΩ,ξ ⊢ v : τ

Proof C.2 We proceed by a case analysis on v̂.

case v̂ = •τ1
We have that v ∈ [[τ1]] from v ∈ γξ(v̂), and that τ1 <: τ from

Ω ⊢ v̂ : τ , and the result is immediate.

case v̂ = p̂+ We have that v = p ∈ ξ(p̂+) from v ∈ γξ(p̂
+), and that Ω(p̂+) =

τ = A for some A. By definition δΩ,ξ(p) = Ω(p̂+) given p ∈ γξ(p̂
+), and

the result is immediate.

case v̂ = p̂− We have that v = p ∈ ξ(p̂−) from v ∈ γξ(p̂
−), and that Ω(p̂−) <:

τ = A for some A. By definition δΩ,ξ(p) = Ω(p̂−) given p ∈ γξ(p̂
−), and

the result is immediate.

Lemma C.3 (Preservation of Well-formedness under Store Concretization)

Ω ⊢ ŝ : Σ ∧ s ∈ γξ(ŝ) =⇒ δΩ,ξ ⊢ ws : Σ

Proof C.3 We must show that (x, τ) ∈ Σ. δΩ,ξ ⊢ s(x) : τ . Assume (x, τ) ∈ Σ.
We have that Ω ⊢ ŝ(x) : τ from Ω ⊢ ŝ : Σ, and s(x) ∈ γξ(ŝ(x)) from s ∈ γξ(ŝ).
The result is immediate from Lemma C.2.

Lemma C.4 (Preservation of Well-formedness under Record Concretization)

Ω ⊢ r̂ : ω ∧ r ∈ γξ(r̂) =⇒ δΩ,ξ ⊢ r : ω

Proof C.4 We must show that (f, τ) ∈ ω. δΩ,ξ ⊢ r.f : τ . Assume (f, τ) ∈ ω.
We have that Ω ⊢ r̂.f : τ from Ω ⊢ r̂ : ω, and r.f ∈ γξ(r̂.f) from r ∈ γξ(r̂). The
result is immediate from Lemma C.2.
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Lemma C.5 (Preservation of Well-formedness under Heap Concretization)

Ω ⊢ ĥ ∧ h ∈ γξ(ĥ) =⇒ δΩ,ξ ⊢ h

Proof C.5 We must show that (p,A) ∈ δΩ,ξ. δΩ,ξ ⊢ h(p) : ∆(A). Assume
(p,A) ∈ δΩ,ξ. By definition of δΩ,ξ we have that there exists an abstract struc-
tural pointer (must or may) p̂ such that p ∈ ξ(p̂), and Ω(p̂) = A. We have

that Ω ⊢ ĥ(p̂) : ∆(A) from Ω ⊢ ĥ, and from the fact that ξ has pairwise dis-

joint codomain we have that p̂ is unique, which together h ∈ γξ(ĥ), gives us

h(p) ∈ γξ(ĥ(p̂)) and the result is immediate from Lemma C.4.


